PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits

PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制

基本信息

  • 批准号:
    2102129
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This grant will support research that will generate new fundamental knowledge on the dynamic and acoustic properties of a PZT-hydrogel based active complementary acoustic metamaterial. Such acoustic metamaterials will enable high energy transmission at high frequency through sound barriers, including those with strong intrinsic loss like skull for brain imaging and brain-machine interface. Transcranial ultrasound (i.e. ultrasound transmission through skull) has many applications including noninvasive surgeries and drug delivery. However, current transcranial ultrasound techniques are all based on sound waves with relatively low frequency and poor spatial resolution, and the energy transmission through the lossy skull is low even for such low frequency sound waves. Brain imaging and brain-machine interfaces require better spatial resolution, which can be realzied by enabling transmission of high frequency ultrasound through skulls, which is not achievable with existing technologies. Active non-Hermitian complementary acoustic metamaterials (NHCMM) are promising compensation media to complement with the strong transmission loss through skull for high frequency acoustic waves. This project explores the acoustic and material properties of PZT-hydrogel composites integrated with feedback control circuits for the experimental realization of NHCMM that can compensate the high frequency ultrasound transmission loss through a real skull. This experimental realization will set the foundation for high resolution ultrasound brain imaging and brain-machine interface. This research will have broader impacts in science, defense, industry and general society by satisfying the critical need for high performance brain imaging and brain-machine interface. In addition, this research will promote the progress of fundamental acoustics, soft matter physics, and metamaterials. This multi-disciplinary research will broaden the participation of underrepresented groups in science and engineering and positively impact STEM education.The objective of this research is to design, fabricate, and experimentally characterize an active NHCMM by integrating PZT elements, hydrogel, and feedback control circuits that can be used to complement sound barriers, including those with strong intrinsic loss such as skull, to achieve optimal energy transmission for brain imaging and brain-machine interface. The NHCMM has effective density and bulk modulus with negative values of that of the barrier to suppress the strong impedance mismatch and material gain that balances the intrinsic loss in the barrier. The NHCMM will be realized by integrating piezoelectric elements and hydrogel with electrical circuit components. The integrated feedback control circuit will actively modulate the effective acoustic properties of the metamaterials to realize the desired parameters of NHCMM and compensate impedance mismatch and loss simultaneously. This fundamental research project will pave the road for the realization of noninvasive ultrasonic brain imaging, high intensity focused ultrasound treatments, brain stimulation, and brain-machine interface. To achieve the proposed objective, the two PIs will utilize their complemented expertise in acoustics, metamaterials, and soft matter to accomplish the following research tasks: 1) Identify the dynamic properties of different types of hydrogels in a wide ultrasonic frequency band; 2) Design and fabricate hydrogel-based active NHCMMs with feedback-circuit-controlled piezoelectric elements to realize any desired effective density and bulk modulus with acoustic gain; 3) Characterize and optimize NHCMMs to enhance acoustic energy transmission through lossy skull for brain imaging and brain-machine interface.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持研究,以产生有关基于 PZT 水凝胶的主动互补声学超材料的动态和声学特性的新基础知识。这种声学超材料将能够通过声屏障进行高频率的高能量传输,包括那些具有强烈内在损耗的声屏障,例如用于脑成像和脑机接口的头骨。经颅超声(即通过颅骨传输超声)有许多应用,包括无创手术和药物输送。然而,目前的经颅超声技术都是基于频率较低、空间分辨率较差的声波,即使对于如此低频的声波,通过有损颅骨的能量传输也较低。脑成像和脑机接口需要更好的空间分辨率,这可以通过通过头骨传输高频超声波来实现,这是现有技术无法实现的。活性非厄米互补声学超材料(NHCMM)是一种很有前途的补偿介质,可以补充高频声波通过颅骨的强传输损耗。该项目探索了与反馈控制电路集成的 PZT-水凝胶复合材料的声学和材料特性,用于 NHCMM 的实验实现,该 NHCMM 可以补偿通过真实头骨的高频超声传输损失。这一实验实现将为高分辨率超声脑成像和脑机接口奠定基础。这项研究将满足高性能脑成像和脑机接口的关键需求,对科学、国防、工业和社会产生更广泛的影响。此外,这项研究还将推动基础声学、软物质物理和超材料的进展。这项多学科研究将扩大在科学和工程领域代表性不足的群体的参与,并对 STEM 教育产生积极影响。这项研究的目的是通过集成 PZT 元件、水凝胶和反馈控制电路来设计、制造和实验表征主动 NHCMM可用于补充声屏障,包括颅骨等固有损耗较强的声屏障,以实现脑成像和脑机接口的最佳能量传输。 NHCMM 的有效密度和体积模量为势垒的负值,可抑制强阻抗失配和材料增益,从而平衡势垒的固有损耗。 NHCMM将通过将压电元件和水凝胶与电路元件集成来实现。集成反馈控制电路将主动调制超材料的有效声学特性,以实现NHCMM所需的参数,并同时补偿阻抗失配和损耗。该基础研究项目将为实现无创超声脑成像、高强度聚焦超声治疗、脑刺激和脑机接口铺平道路。为了实现拟议的目标,两位PI将利用他们在声学、超材料和软物质方面的互补专业知识来完成以下研究任务:1)识别不同类型水凝胶在宽超声频带内的动态特性; 2)设计和制造带有反馈电路控制压电元件的基于水凝胶的有源NHCMM,以实现任何所需的有效密度和体积模量以及声学增益; 3) 表征和优化 NHCMM,以增强通过有损头骨的声能传输,用于脑成像和脑机接口。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse design of acoustic metasurfaces using space-filling points
  • DOI:
    10.1063/5.0096869
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    A. Krishna;Steven R. Craig;Chengzhi Shi;V. R. Joseph
  • 通讯作者:
    A. Krishna;Steven R. Craig;Chengzhi Shi;V. R. Joseph
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chengzhi Shi其他文献

Design and simulation of acoustic vortex wave arrays for long-range underwater communication.
用于远程水下通信的声涡波阵列的设计和仿真。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Mark E. Kelly;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
Path planning of mobile robot based on improved A∗ algorithm
基于改进A*算法的移动机器人路径规划
Ray tracing model for long-range acoustic vortex wave propagation underwater
水下远距离声涡波传播的射线追踪模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark E. Kelly;Zheguang Zou;Likun Zhang;Chengzhi Shi
  • 通讯作者:
    Chengzhi Shi
A drug‐selectable acoustic reporter gene system for human cell ultrasound imaging
用于人体细胞超声成像的药物选择性声学报告基因系统
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Alessandro R. Howells;Phoebe J. Welch;John Kim;C. Forest;Chengzhi Shi;Xiaojun Lian
  • 通讯作者:
    Xiaojun Lian

Chengzhi Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chengzhi Shi', 18)}}的其他基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation
职业:了解角动量携带声波传播的基本动力学
  • 批准号:
    2142555
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2037565
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型组氨酸6-溶菌酶4L-骨形态发生蛋白-2-脂肪干细胞水凝胶促进脊柱融合的实验研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
仿线粒体矿化水凝胶融合Wnt3a靶向活化眶区自体干细胞实现眼眶骨再生的研究
  • 批准号:
    82171098
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
装载SDF-1/BMP-2纳米粒及DFM的可注射温敏水凝胶体系对脊柱融合的应用基础研究
  • 批准号:
    31700839
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
3D打印多孔钛合金填充辛伐他汀温敏性水凝胶促进骨和血管新生在脊柱融合中的研究
  • 批准号:
    81672133
  • 批准年份:
    2016
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
新型类弹性蛋白融合 bFGF 功能材料的制备及皮肤缺损修复研究
  • 批准号:
    31670975
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Engineering the open porous nanofibrous microsphere integrated fibrillar hydrogel for the co-delivery of antibacterial and angiogenic agents aimed at the rapid diabetic wound repair
设计开放多孔纳米纤维微球集成纤维水凝胶,用于共同递送抗菌剂和血管生成剂,旨在快速修复糖尿病伤口
  • 批准号:
    10737115
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
  • 批准号:
    2243648
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
  • 批准号:
    1809612
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Highly Integrated Hydrogel Fabrication Challenge
高度集成的水凝胶制造挑战
  • 批准号:
    18K18841
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了