Rational Curves on Fano Varieties
Fano 品种的有理曲线
基本信息
- 批准号:2101935
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic varieties are common zeros of collections of polynomial equations. Rational curves are the simplest algebraic varieties, and an important approach to study the geometry of algebraic varieties is to study parameter spaces of rational curves contained in them. These parameter spaces are themselves varieties with rich geometry, and their study has broad applications in higher dimensional algebraic geometry, enumerative geometry, arithmetic geometry, and questions inspired by mathematical physics. In this project, several open questions on various aspects of the geometry of spaces of rational curves on algebraic varieties are investigated. The project provides training opportunities for graduate students. The focus of the first part of the project is the study of spaces of rational curves (as well as rational surfaces and linear subvarieties) contained in hypersurfaces. Hypersurfaces of low degree in projective space form an important testing ground for the study of rationally connected and Fano varieties as well as several other questions in birational geometry. Despite some progress over the past few years, some of the basic properties of these spaces are still unknown. A major guiding question for the study of rational curves on hypersurfaces is which Fano hypersurfaces are rational or unirational. The second part of the project is on the study of rational curves on varieties from the perspective of Geometric Maninís conjecture which predicts the growth rate of a counting function associated to the irreducible components of moduli spaces of rational curves on a variety. In this part, several questions on the geometry of spaces of rational curves on Fano threefolds in characteristic zero and on del Pezzo surfaces over fields of finite characteristic are investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数簇是多项式方程组的公共零点,有理曲线是最简单的代数簇,研究代数簇几何的一个重要途径就是研究其中包含的有理曲线的参数空间,这些参数空间本身就是丰富的簇。几何,他们的研究在高维代数几何、枚举几何、算术几何以及受数学物理启发的问题中具有广泛的应用。在这个项目中,有几个关于几何各个方面的开放问题。该项目为研究生提供了培训机会,该项目的第一部分的重点是研究超曲面中包含的有理曲线空间(以及有理曲面和线性子簇)。射影空间中的低次超曲面构成了研究有理连通簇和法诺簇以及双有理几何中的其他几个问题的重要试验场,尽管在过去几年中取得了一些进展,但这些空间的一些基本属性仍然存在。超曲面有理引导曲线研究的一个主要问题是法诺超曲面是有理还是非有理,该项目的第二部分是从预测增长率的几何马尼尼斯猜想的角度研究有理曲线。与有理曲线模空间不可约分量相关的计数函数的研究在这一部分中,关于特征零和德尔佩佐的法诺三重有理曲线空间几何的几个问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roya Beheshti Zavareh其他文献
Roya Beheshti Zavareh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roya Beheshti Zavareh', 18)}}的其他基金
Spaces of Rational Curves in Projective Varieties
射影簇中的有理曲线空间
- 批准号:
1204567 - 财政年份:2012
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
相似国自然基金
可积方程簇与稳定曲线模空间
- 批准号:12371254
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
异质性纵向数据的混合增长曲线模型:均值与协方差联合建模
- 批准号:12301362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熔体电写曲线打印射流滞后力学模型
- 批准号:12302358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多波混频对原子系综中光曲线拖曳效应的相干调控研究
- 批准号:62305312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变刚度S形进气道曲线纤维路径规划及协同铺丝工艺研究
- 批准号:52305026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
- 批准号:
2337107 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows