RII Track 4: Probabilistic Dynamic Control Stability Analysis in Power Grids with High Penetration of Renewable Resources

RII 轨道 4:可再生资源高渗透率电网的概率动态控制稳定性分析

基本信息

  • 批准号:
    2033355
  • 负责人:
  • 金额:
    $ 19.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The legacy power grid is undergoing a radical transformation. Notably, the impact of distributed renewable energy resources is challenging the safe and reliable operation of the power grid and calling for innovative techniques to enhance the reliability and stability in power grids with high penetration of renewable resources. With the support of this NSF EPSCoR RII Tack-4 fellowship, the PI and a Ph.D. student will receive training on new techniques, including novel approaches for modeling the impact of uncertain renewable generation on grid operation and a hardware-in-loop system simulation platform at the National Renewable Energy Laboratory (NREL). The PI and the student will closely collaborate with NREL researchers by focusing on how to better assess grid dynamic stability under uncertain renewable generation. This fellowship will provide an excellent opportunity for a Ph.D. student to gain valuable experience and develop new skillsets. The PI will bring the new techniques back to the home institution, i.e., North Dakota State University (NDSU), and introduce them to other investigators in related fields for the future benefit of NDSU and North Dakota. This fellowship will foster a strong partnership between NDSU and NREL, and help the state of North Dakota better meet its renewable energy goals.The increasing integration of renewable energy resources via power electronic inverters have significantly changed grid dynamics. The dynamic interactions between inverter-based renewable energy resources (IB-RERs) and the power grid have caused the dynamic control stability issue. However, it is challenging to analyze dynamic control stability in power grids with high penetration of IB-RERs, especially considering the impact of variable and uncertain renewable generation. The overarching goal of this fellowship is to support the PI’s training and collaborative research at NREL, focusing on the development and validation of a novel approach for probabilistically assessing dynamic control stability in the power grid with high penetration of IB-RERs. Specific training and research objectives include: 1) modeling the impact of uncertain renewable generation on the dynamic control stability, 2) developing a novel method for probabilistic analysis of dynamic control stability under uncertain renewable generation, and 3) receiving training on advanced hardware-in-loop simulation platforms and performing proof-of-concept validation. This project will expand the PI’s research capacity and transform his career path towards a promising direction in enhancing the dynamic stability of the power grid with large-scale integration of IB-RERs. The results of the research will significantly advance the state-of-the-art of grid stability analysis to better understand the impact of variable and uncertain renewable generation on dynamic control stability, and ultimately support the large-scale renewable integration in power grids, thus providing higher-quality, more reliable, and cleaner electricity to millions of customers across the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统电网正在经历彻底的变革,值得注意的是,分布式可再生能源的影响对电网的安全可靠运行提出了挑战,需要创新技术来提高可再生能源高渗透率电网的可靠性和稳定性。在 NSF EPSCoR RII Tack-4 奖学金的支持下,PI 和博士生将接受新技术培训,包括建模不确定可再生能源发电对电网运行影响的新方法和硬件。国家环路系统仿真平台可再生能源实验室 (NREL)。 PI 和学生将与 NREL 研究人员密切合作,重点研究如何更好地评估不确定的可再生能源发电下的电网动态稳定性。 PI 将把新技术带回所在机构,即北达科他州立大学 (NDSU),并将其介绍给相关领域的其他研究人员,以便 NDSU 和北达科他州的未来受益。将培养强大的NDSU 和 NREL 之间的合作伙伴关系,帮助北达科他州更好地实现其可再生能源目标。通过电力电子逆变器不断增加的可再生能源整合显着改变了基于逆变器的可再生能源之间的动态相互作用。 RER)和电网引起了动态控制稳定性问题,然而,分析具有高渗透率的IB-RER电网的动态控制稳定性具有挑战性,特别是考虑到可变和不确定的可再生能源发电的总体目标。这个团契旨在支持 NREL 的 PI 培训和协作研究,重点是开发和验证一种新方法,用于概率评估 IB-RER 高渗透率的电网中的动态控制稳定性。 具体培训和研究目标包括: 1) 建模。不确定性可再生能源发电对动态控制稳定性的影响,2)开发一种新方法,用于不确定性可再生能源发电下动态控制稳定性的概率分析,3)接受先进的硬件在环仿真平台的培训并执行该项目将扩大 PI 的研究能力,并将其职业道路转向通过大规模 IB-RER 增强电网动态稳定性的有前途的方向。推进电网稳定性分析的最先进水平,更好地了解可变和不确定的可再生能源发电对动态控制稳定性的影响,最终支持电网大规模可再生能源并网,从而提供更高质量、更可靠的电力,为全球数百万客户提供更清洁的电力美国。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small-signal Stability Analysis of Power Systems under Uncertain Renewable Generation
可再生发电不确定性下电力系统小信号稳定性分析
Probabilistic Grid Strength Assessment of Power Systems with Uncertain Renewable Generation based on Probabilistic Collocation Method
基于概率配置法的可再生发电不确定性电力系统概率电网强度评估
Impact of Phase Displacement among Coupled Inverters on Harmonic Distortion in MicroGrids
耦合逆变器之间的相移对微电网谐波失真的影响
Estimation of Transmission System Power Transfer Capability at Competitive Renewable Energy Zones
竞争性可再生能源区输电系统电力传输能力的估算
Impact of Solar Inverter Dynamics during Grid Restoration Period on Protection Schemes Based on Negative-Sequence Components
电网恢复期间太阳能逆变器动态对基于负序分量的保护方案的影响
  • DOI:
    10.3390/en15124360
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ekic, Almir;Wu, Di;Jiang, John N.
  • 通讯作者:
    Jiang, John N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Di Wu其他文献

Methods for Eliminating the Complex Background of Pedestrian Images
行人图像复杂背景的消除方法
  • DOI:
    10.1007/978-3-319-63309-1_40
  • 发表时间:
    2017-08-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Wu;Si;You;Zhi
  • 通讯作者:
    Zhi
Data-driven Model Predictive and Reinforcement Learning-Based Control for Building Energy Management: a Survey
基于数据驱动模型预测和强化学习的建筑能源管理控制:调查
  • DOI:
    10.1109/access.2022.3156581
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Huiliang Zhang;Sayani Seal;Di Wu;B. Boulet;F. Bouffard;G. Joós
  • 通讯作者:
    G. Joós
Preparation of a novel sulfated glycopeptide complex and inhibiting L1210 cell lines property in vitro
新型硫酸化糖肽复合物的制备及其体外抑制L1210细胞系特性
  • DOI:
    10.1016/j.carbpol.2008.12.031
  • 发表时间:
    2009-06-10
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Libin Ye;Jing;Shuai Zhou;Sheng Wang;Di Wu;Ying
  • 通讯作者:
    Ying
Distributed active disturbance rejection formation containment control for multiple autonomous underwater vehicles with prescribed performance
具有规定性能的多自主水下航行器分布式自抗扰编队遏制控制
  • DOI:
    10.1016/j.oceaneng.2022.112057
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jian Xu;Yunfei Cui;W. Xing;Fei Huang;Xue Du;Zheping Yan;Di Wu
  • 通讯作者:
    Di Wu
Boosting Based Multiple Kernel Learning and Transfer Regression for Electricity Load Forecasting
基于Boosting的多核学习和传递回归的电力负荷预测
  • DOI:
    10.1007/978-3-319-71273-4_4
  • 发表时间:
    2017-09-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Wu;Boyu Wang;Doina Precup;B. Boulet
  • 通讯作者:
    B. Boulet

Di Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Di Wu', 18)}}的其他基金

EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids
EAGER:建立基于网络的逆变器主导电网分析和控制框架
  • 批准号:
    2333563
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
  • 批准号:
    12301393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
  • 批准号:
    2324302
  • 财政年份:
    2024
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324711
  • 财政年份:
    2024
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 1: Facilitating Reproducible Open GeoScience
合作研究:GEO OSE 第 1 轨道:促进可重复的开放地球科学
  • 批准号:
    2324732
  • 财政年份:
    2024
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了