K-Trivial Varieties - Degenerations, Automorphisms, and Periods

K-平凡簇 - 简并、自同构和周期

基本信息

  • 批准号:
    2101640
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is concerned with the study of algebraic varieties, that is geometric objects defined by polynomial equations. Such objects are ubiquitous in mathematics, and are relevant to a variety of real world applications ranging from cryptography, to computational biology, to models of the universe in physics. Indeed, the Calabi-Yau threefolds, a special class of algebraic varieties, are abstract representations of the shape of the universe in string theory. A very consequential, wide-open question regarding the Calabi-Yau threefolds is the existence of finitely many types of such objects. This proposal is concerned with the study of Calabi-Yau threefolds and of a related, wider class of algebraic varieties, the so-called K-trivial varieties. A number of questions ranging from the above-mentioned finiteness question to more tangible questions will be investigated. This study will involve a number of the PI’s graduate students and postdocs. Some additional research and outreach activities related to the subject are also planned. The study of K-trivial varieties, that is algebraic varieties with trivial canonical class, is a central subject in algebraic geometry. The proposed projects will focus on two main classes of K-trivial varieties: hyper-Kaehler manifolds and Calabi-Yau threefolds. The motivational goals driving this study are the finiteness of deformation types for such objects, and the complementary question of constructing new deformation classes (especially in the hyper-Kaehler case). Intermediate steps towards these challenging objectives include questions regarding the automorphism groups, that is the symmetries of such objects; the deformations and degenerations, that is breaking up the K-trivial varieties into simpler, more manageable pieces; and the fibrations of K-trivial varieties (especially Lagrangian fibrations for hyper-Kaehler manifolds), that is constructing such varieties from lower dimensional objects. A main tool in this investigation is Hodge theory, and the associated period maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何涉及代数簇的研究,即由多项式方程定义的几何对象,这些对象在数学中无处不在,并且与从密码学到​​计算生物学到宇宙模型的各种现实世界应用相关。事实上,卡拉比-丘三重是一类特殊的代数簇,是弦理论中宇宙形状的抽象表示,是一个关于宇宙的非常重要的、广泛开放的问题。卡拉比-丘三重是此类对象的有限多种类型的存在,该提议涉及卡拉比-丘三重和一类相关的、更广泛的代数簇,即所谓的 K-平凡簇的研究。从上述有限性问题到更具体的问题,本研究将涉及一些与该主题相关的额外研究和外展活动。 K-平凡簇的研究,即具有平凡正则类的代数簇,是代数几何的核心课题。拟议的项目将集中于两个主要类别的 K-平凡簇:超凯勒流形和卡拉比-丘。推动这项研究的动机目标是此类对象的变形类型的有限性,以及构建新变形类(尤其是在超凯勒变形类中)的补充问题。实现这些具有挑战性的目标的中间步骤包括有关自同构群的问题,即此类对象的对称性;将 K-平凡簇分解为更简单、更易于管理的部分以及 K 的纤维; - 平凡簇(尤其是超凯勒流形的拉格朗日纤维),即从低维对象构造此类簇。这项研究的主要工具是霍奇理论以及相关的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformation of rational singularities and Hodge structure
  • DOI:
    10.14231/ag-2022-014
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    M. Kerr;R. Laza;M. Saito
  • 通讯作者:
    M. Kerr;R. Laza;M. Saito
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radu Laza其他文献

Radu Laza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radu Laza', 18)}}的其他基金

Moduli and Periods
模数和周期
  • 批准号:
    1802128
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Hodge theory, Moduli and Representation theory
FRG:协作研究:霍奇理论、模数和表示理论
  • 批准号:
    1361143
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Advances in Hodge Theory and Moduli
职业:霍奇理论和模数的进展
  • 批准号:
    1254812
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Moduli Spaces - Geometry and Arithmetic
模空间 - 几何和算术
  • 批准号:
    1200875
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Arithmetic and Geometry of Calabi-Yau Varieties Workshop
Calabi-Yau品种的算术和几何工作坊
  • 批准号:
    1100007
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
  • 批准号:
    0968968
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
  • 批准号:
    0856203
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

燕麦β-葡聚糖含量差异品种的转录代谢机制及外源调控途径研究
  • 批准号:
    32360531
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
耦合三维辐射传输模型与叶片光合过程的玉米品种级LUE表型鉴定研究
  • 批准号:
    42371373
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
玉米规模化育种中品种精准识别的深度学习方法研究
  • 批准号:
    32360437
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于“理-效-物-地-亲”策略研究藏药沙棘特色品种“形-质-效”多维品质特征及形成机制
  • 批准号:
    82374145
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
不同芒果品种果实重要过敏原差异分析及低致敏品种筛选
  • 批准号:
    32302482
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
  • 批准号:
    23K03032
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
  • 批准号:
    22K03261
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
  • 批准号:
    17K05188
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial and computational algebra of toric degenerations of varieties
品种环面退化的组合和计算代数
  • 批准号:
    1953188
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Obstructions to deforming curves on algebraic varieties and a study on their Hilbert schemes
代数簇变形曲线的阻碍及其希尔伯特格式的研究
  • 批准号:
    17K05210
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了