RAPID: Arresting the spread of SARS-CoV-2 on surfaces and in the air using engineered water nanostructures enriched with de novo designed neutralizing peptides
RAPID:使用富含从头设计的中和肽的工程水纳米结构来阻止 SARS-CoV-2 在表面和空气中的传播
基本信息
- 批准号:2031785
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent COVID-19 pandemic has spotlighted the problem of rapid transmission of infectious diseases. The COVID-19 virus is transmitted to new hosts through contaminated surfaces as well as through the air. The virus is known to survive in air for hours and on surfaces for days. All current approaches for stopping the transmission, such as masks, frequent hand washing, and social distancing, are insufficient and cause other detriments, and the high numbers of asymptomatic cases and shortage of efficient facemasks are driving the number of infections higher. Current methods for general prevention of transmission of airborne infectious diseases, such as air filtration, use of chemical gases (such as hydrogen peroxide) and the use of ultraviolet radiation, have significant shortcomings and health risks, and they cannot be implemented indoors with people present. This project seeks to utilize the recently developed (by the investigators) nanotechnology-based carrier platform using Engineered Water Nanostructures to inactivate viruses. If this technology is proved successful it can be scaled up and systems can be built and used in various applications. This innovative technology is particularly applicable to closed indoor environments and could help in battling the COVID-19 pandemic as people emerge from their social isolation states and return to work. As a part of the project, graduate and postdoctoral students will be recruited and trained in interdisciplinary research. The knowledge gained through the project will lead to better control and prevention of the COVID-19 threat. In this RAPID project, novel computational methods will be used to design neutralizing disulfide-rich peptides de novo and functionalize them to bind the spike protein of COVID-19 and block it from interacting with angiotensin-converting enzyme 2, its endogenous receptor. Then, such peptides, along with other antimicrobials, will be incorporated in a nanocarrier platform using engineered water nanostructures synthesized using combination of electrospray and ionization. A thorough characterization of the physicochemical properties of these water-based nanostructures will be carried out using state of the art analytical methods. The capability of these materials to interact and inactivate the virus on both the air and on surfaces will be assessed using microbiological assays. The interdisciplinary approach of interweaving synthetic biology with nanotechnology would provide a solid tool for tackling COVID-19 on environmental media. Furthermore, the project will lead to the continuation and enhancement of educational activities on emerging aspects of environmental nanotechnology and nano-bio interactions. Results will be disseminated to relevant stakeholders through multifaceted communication activities including publications, conferences, and other out-reach activities. In summary, the proposed nanotechnology-based method has the potential to transform the way we currently control airborne infectious diseases. The social, technological, scientific, public health and economic impact will be significant if such a novel, sustainable, low energy, chemical-free and environmentally friendly method is proven to be effective in the battle against COVID-19.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的 COVID-19 大流行凸显了传染病快速传播的问题。 COVID-19 病毒通过受污染的表面以及空气传播给新宿主。已知该病毒可以在空气中存活数小时,在表面上存活数天。目前所有阻止传播的方法,例如口罩、经常洗手和保持社交距离,都不够充分,还会造成其他危害,而大量无症状病例和高效口罩的短缺正在导致感染人数上升。目前一般预防空气传播传染病传播的方法,例如空气过滤、使用化学气体(例如过氧化氢)和使用紫外线辐射,都存在重大缺陷和健康风险,并且无法在有人在场的室内实施。该项目旨在利用最近开发的(由研究人员)基于纳米技术的载体平台,使用工程水纳米结构来灭活病毒。如果这项技术被证明是成功的,它就可以扩大规模,并且可以在各种应用中构建和使用系统。这项创新技术特别适用于封闭的室内环境,当人们摆脱社会隔离状态并重返工作岗位时,可以帮助对抗 COVID-19 大流行。作为该项目的一部分,将招募研究生和博士后学生并进行跨学科研究培训。通过该项目获得的知识将有助于更好地控制和预防 COVID-19 威胁。在这个 RAPID 项目中,新的计算方法将用于从头设计富含二硫键的中和肽,并将其功能化以结合 COVID-19 的刺突蛋白,并阻止其与其内源性受体血管紧张素转换酶 2 相互作用。然后,这些肽与其他抗菌剂将被整合到使用电喷雾和电离组合合成的工程水纳米结构的纳米载体平台中。将使用最先进的分析方法对这些水基纳米结构的物理化学性质进行彻底表征。这些材料与空气和表面上的病毒相互作用并使其灭活的能力将使用微生物测定进行评估。将合成生物学与纳米技术交织在一起的跨学科方法将为解决环境介质上的 COVID-19 问题提供坚实的工具。此外,该项目将导致环境纳米技术和纳米生物相互作用新兴方面的教育活动的继续和加强。结果将通过多方面的沟通活动(包括出版物、会议和其他外展活动)传播给相关利益相关者。总之,所提出的基于纳米技术的方法有可能改变我们目前控制空气传播传染病的方式。如果这种新颖、可持续、低能耗、无化学物质且环境友好的方法被证明能有效对抗 COVID-19,那么对社会、技术、科学、公共卫生和经济的影响将是重大的。该奖项反映了 NSF 的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inactivating SARS-CoV-2 Surrogates on Surfaces Using Engineered Water Nanostructures Incorporated with Nature Derived Antimicrobials
使用掺有天然抗菌剂的工程水纳米结构灭活表面上的 SARS-CoV-2 替代物
- DOI:10.3390/nano12101735
- 发表时间:2022-05-19
- 期刊:
- 影响因子:5.3
- 作者:Vaze, Nachiket;Soorneedi, Anand R.;Moore, Matthew D.;Demokritou, Philip
- 通讯作者:Demokritou, Philip
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Demokritou其他文献
Development & characterization of fluorescently tagged nanocellulose for nanotoxicological studies
- DOI:
10.1039/c8en01381k - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Maryam Salari;Dimitrios Bitounis;Kunal Bhattacharya;Georgios Pyrgiotakis;Zhenyuan Zhang;Emilia Purington;William Gramlich;Yohann Grondin;Rick Rogers;Douglas Bousfield;Philip Demokritou - 通讯作者:
Philip Demokritou
The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity
- DOI:
10.1039/c4en00039k - 发表时间:
2014-08 - 期刊:
- 影响因子:0
- 作者:
Robert A. Yokel;Salik Hussain;Stavros Garantziotis;Philip Demokritou;Vincent Castranova;Flemming R. Cassee - 通讯作者:
Flemming R. Cassee
Quantifying the effects of engineered nanomaterials on endothelial cell architecture and vascular barrier integrity using a cell pair model
- DOI:
10.1039/c9nr04981a - 发表时间:
2019-09 - 期刊:
- 影响因子:6.7
- 作者:
Feyisayo Eweje;Herdeline Ann M. Ardoña;John F. Zimmerman;Blakely B. O'Connor;Seungkuk Ahn;Thomas Grevesse;Karla N. Rivera;Dimitrios Bitounis;Philip Demokritou;Kevin Kit Parker - 通讯作者:
Kevin Kit Parker
Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs.
微米和纳米塑料 (MNP) 及其潜在的毒理学结果:科学现状、知识差距和研究需求。
- DOI:
10.1016/j.impact.2023.100481 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.9
- 作者:
Zhenning Yang;G. DeLoid;Helmut Zarbl;Joshua Baw;Philip Demokritou - 通讯作者:
Philip Demokritou
Assessment of Ingested Micro- and Nanoplastic (MNP)-Mediated Genotoxicity in an In Vitro Model of the Small Intestinal Epithelium (SIE)
在小肠上皮 (SIE) 体外模型中评估摄入的微米和纳米塑料 (MNP) 介导的基因毒性
- DOI:
10.3390/nano14090807 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.3
- 作者:
Zhenning Yang;G. DeLoid;Joshua Baw;Helmut Zarbl;Philip Demokritou - 通讯作者:
Philip Demokritou
Philip Demokritou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Demokritou', 18)}}的其他基金
Thermal Decomposition/incineration of Nano-Enabled Products (NEPs): Environmental Health and Safety Implications
纳米产品 (NEP) 的热分解/焚烧:环境健康和安全影响
- 批准号:
1436450 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A Novel Safer Formulation Concept for Flame Generated Engineered Nanomaterials
火焰生成工程纳米材料的新型更安全配方概念
- 批准号:
1235806 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
刑事手続における「事実」と「遮断効」の範囲(1)―身体拘束にかかる諸原則の射程―
刑事诉讼中“事实”和“阻碍效应”的范围 (1) - 有关人身约束的原则范围 -
- 批准号:
22K01203 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revisiting the Roles of Judiciary and Exective in International Cooperation in Criminal Matters: A case study of European Arrest Warrant
重新审视司法机构和行政机构在刑事事项国际合作中的作用:欧洲逮捕令案例研究
- 批准号:
22K01179 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In vitro bioreactor production of a genetically modified late liver stage-arresting replication competent Plasmodium falciparum sporozoite vaccine
体外生物反应器生产具有复制能力的转基因晚期肝阶段恶性疟原虫子孢子疫苗
- 批准号:
10634703 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Arresting methanogenesis with bioelectrochemically generated hydrogen peroxide for producing volatile fatty acids
用生物电化学产生的过氧化氢抑制产甲烷作用以产生挥发性脂肪酸
- 批准号:
2150613 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
In vitro bioreactor production of a genetically modified late liver stage-arresting replication competent Plasmodium falciparum sporozoite vaccine
体外生物反应器生产具有复制能力的转基因晚期肝阶段恶性疟原虫子孢子疫苗
- 批准号:
10547414 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别: