Floquet Theory for Stochastic Temporal Networks and Optimization Theory for the Design of Schedules for COVID-19

随机时间网络的 Floquet 理论和 COVID-19 时间表设计的优化理论

基本信息

  • 批准号:
    2052720
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

No problem facing humanity is more severe and more urgent than COVID-19, and the shelter-in-place approach to social distancing has decimated the U.S. economy. COVID-19 social distancing may be required for a long period for a multitude of reasons including the uncertainty of the effectiveness of vaccines on emerging strains. Therefore, it is desired to identify mathematically principled solutions that strike an optimal balance between productivity and risk to infection through developing a “science and engineering for social distancing”. Thus motivated, the PIs will develop (1) novel mathematical theory to better and more rigorously understand epidemic spreading on social-contact networks that undergo weekly and/or daily cycles; and (2) optimization theory to design realistic social-contact networks (e.g., using curfews for community and course scheduling for academic institutions) that both mitigate pandemics and allow an acceptable level of social/economic activity. These techniques will be applied to social-network datasets related to COVID-19 to validate theory and obtain practical knowledge. These mathematical and computational tools and related datasets will support policy makers for educational institutions, large companies, and governing bodies as they manage the economic and health impacts of COVID-19 as well as future pandemics. The first goal of the project is to extend Floquet theory of ordinary differential equations to (a) characterize epidemic spreading on social-contact networks that are stochastic, time-varying, and periodic; (b) identify and analyze novel behaviors for disease dynamics that arise because the social-network’s periodicity and the disease progression change at similar time scales; and (c) study the effects of network structures that contribute to disease localization (e.g., in hub nodes and communities in the network). These questions remain underexplored for dynamically changing networks. The second goal of the project is to develop network optimization theory to design mathematically principled social-distancing protocols that can both suppress COVID-19 spreading and also maintain an acceptable level of economic and social activity. Specifically, network perturbation and optimization techniques for Floquet decompositions will be developed, and then they will be combined with non-convex optimization algorithms. To date, mathematical or even computational foundations for social-contact engineering in dynamically changing contact networks due to human activity are lacking. Finally, these techniques will be applied to social-network datasets related to COVID-19 which provide summarized and anonymized movements of individuals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类面临的问题没有比新冠病毒 (COVID-19) 更严重、更紧迫,而就地避难所采取的保持社交距离的做法已经摧毁了美国经济,出于多种原因,可能需要在很长一段时间内保持社交距离。因此,希望通过开发“社会疏远的科学和工程”来确定数学原理的解决方案,以在生产力和感染风险之间实现最佳平衡。开发 (1) 新颖数学理论,以更好、更严格地理解流行病在每周和/或每日循环的社交接触网络上的传播;(2) 优化理论,以设计现实的社交接触网络(例如,对学术机构使用宵禁和课程安排); )既可以减轻流行病,又可以使社会/经济活动达到可接受的水平。这些技术将应用于与 COVID-19 相关的社交网络数据集,以验证所获得的理论和实践知识。这些数学和计算工具以及相关数据集将支持政策。制造商该项目的首要目标是将常微分方程的 Floquet 理论扩展到 (a) 描述流行病传播的特征。随机、时变和周期性的社交接触网络;(b) 识别动态并分析由于社交网络的周期性和疾病进展在相似的时间尺度上变化而出现的新行为;效果该项目的第二个目标是开发网络优化理论来设计数学原理的社交距离协议。具体来说,将开发用于 Floquet 分解的网络扰动和优化技术,然后将它们与非凸优化相结合。迄今为止,由于人类活动而动态变化的联系网络还缺乏数学甚至计算基础。最后,这些技术将应用于与 COVID-19 相关的社交网络数据集,从而提供汇总和匿名的运动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes
  • DOI:
    10.1038/s42005-022-01062-3
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Bengi Kilic;D. Taylor
  • 通讯作者:
    Bengi Kilic;D. Taylor
Coupling Asymmetry Optimizes Collective Dynamics Over Multiplex Networks
Dimension reduction of dynamical systems on networks with leading and non-leading eigenvectors of adjacency matrices
具有邻接矩阵的前导和非前导特征向量的网络动力系统的降维
  • DOI:
    10.1103/physrevresearch.4.023257
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Masuda, Naoki;Kundu, Prosenjit
  • 通讯作者:
    Kundu, Prosenjit
Grass-roots optimization of coupled oscillator networks
耦合振荡器网络的基层优化
  • DOI:
    10.1103/physreve.106.034202
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chamlagai, Pranick R.;Taylor, Dane;Skardal, Per Sebastian
  • 通讯作者:
    Skardal, Per Sebastian
Social network analysis of manga: similarities to real-world social networks and trends over decades
漫画的社交网络分析:与现实世界社交网络的相似之处以及几十年来的趋势
  • DOI:
    10.1007/s41109-023-00604-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Sugishita, Kashin;Masuda, Naoki
  • 通讯作者:
    Masuda, Naoki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Masuda其他文献

Molecular cloning of cDNA encoding 20 kDa variant human growth hormone and the alternative splicing mechanism.
编码 20 kDa 变体人类生长激素的 cDNA 的分子克隆和选择性剪接机制。
  • DOI:
    10.1016/0167-4781(88)90062-0
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Masuda;Masanori Watahiki;Minoru Tanaka;M. Yamakawa;Ken Shimizu;J. Nagai;K. Nakashima
  • 通讯作者:
    K. Nakashima
Molecular Dynamics Study on Collision Cascade Dynamics for Sputtering of Lennard-Jones Particles
伦纳德-琼斯粒子溅射碰撞级联动力学的分子动力学研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teruyoshi Kobayashi;Naoki Masuda;Nicolas Mauchamp
  • 通讯作者:
    Nicolas Mauchamp
Bio-inspired water distribution network design
仿生供水管网设计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noha Abdel-Mottaleb;Kashin Sugishita;Naoki Masuda;and Qiong Zhang
  • 通讯作者:
    and Qiong Zhang
見田宗介における「交響」
三田宗介的《交响曲》
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuki Nakajima;Kazuyuki Shudo;Naoki Masuda;諫早直人・向井佑介編;徳宮俊貴
  • 通讯作者:
    徳宮俊貴
Emergence of feedforward networks and entrainment in oscillator networks via abiological synaptic plasticity rule
通过非生物突触可塑性规则出现前馈网络和振荡器网络中的夹带
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taro Ueno;Naoki Masuda;Naoki Masuda;Naoki Masuda;Naoki Masuda and Brent Doiron;Naoki Masuda and Hiroshi Kori
  • 通讯作者:
    Naoki Masuda and Hiroshi Kori

Naoki Masuda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naoki Masuda', 18)}}的其他基金

Theory and Application of Temporal Network Embedding
时态网络嵌入理论与应用
  • 批准号:
    2204936
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
耗散加强理论在非线性系统与随机抽样中的应用
  • 批准号:
    12301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机信号自适应稀疏表示理论的数据加密算法研究
  • 批准号:
    62306113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向现代深度学习模型的随机二阶优化算法及理论研究
  • 批准号:
    12301398
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时空各向异性随机场的样本轨道理论及相关问题研究
  • 批准号:
    12371150
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了