EAGER: SARE: In-Sensor Hardware-Software Co-design Methodology of the Hall Effect Sensors to Prevent and Contain the EMI Spoofing Attacks in the Analog-RF Systems

EAGER:SARE:霍尔效应传感器的传感器内硬件-软件协同设计方法,用于防止和遏制模拟射频系统中的 EMI 欺骗攻击

基本信息

  • 批准号:
    2028269
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project will create a novel in-sensor defense methodology to make the state-of-the-art Hall sensors robust against external Electromagnetic-Interference (EMI) spoofing attacks. Prior works in the literature focused only on the safety of the analog-RF electronics by making them robust against EMI in the device level. However, little attention has been paid on the security of analog sensors (e.g., Hall sensors) tightly connected to the analog-RF electronics. Nowadays, many analog-RF electronics are integrated with different onboard Hall sensors. Therefore, security threats from unconventional attacks may come with EMI-spoofing the onboard Hall sensors and such attacks may propagate to the connected analog-RF electronics, hampering the integrity of the whole system. For example, it has been demonstrated that an attack by spoofing the Hall sensors of the solar inverters using an external magnetic field can intentionally perturb the grid frequency, voltage, and inject false real or reactive power to disrupt the power system. Similar attacks may also happen in other critical systems as onboard Hall sensors are nowadays pervasive in various RF applications (e.g., autonomous vehicles, smart grids, robotics, industrial plants, missile guidance, and military defense) because of their low cost, high linearity, and acuracy. Therefore, the research community needs to solve such an important security challenge. This project will have a large impact on the safety and security design of analog-RF systems. The outcomes of this project will be disseminated to the broader communities involving academia, industry, and government via publications and presentations. Moreover, the results of the proposed research activities will be integrated into course work and other educational activities. Making only the analog-RF electronics robust may not be effective to ensure the security of connected systems against external EMI spoofing attacks through the onboard analog Hall effect sensors. This research will develop a novel hardware-software architecture of in-sensor embedded core. The in-sensor embedded core will integrate the Hall sensors with Digital Signal Processing (DSP) cores using the in-sensor memory block peripherals to keep the connected analog-RF systems safe and secure. Detecting an EMI spoofing attack is critical and it is even more critical to keep the connected RF systems operating properly while under an attack. In the proposed architecture, three equidistant Hall elements embedded in a single Hall sensor will be used to detect and measure any type of external EMI spoofing attack. A novel algorithm will be developed to separate the external EMI spoofing data from the original signal data by using two different platforms, namely the FPGA and the DSP core, to accomplish two different types of tasks (time-sensitive processings tasks and control-oriented tasks) respectively. The communication between the FPGA and the DSP core will use the Direct-Memory-Access (DMA) to increase the bandwidth. Moreover, the proposed methodology will be low-power and will not hamper the existing data-processing speed and data rates of the connected analog-RF systems. This technique not only detects the external EMI spoofing attack but also contains the attacks inside the Hall sensors in real time, so that the attacks cannot propagate further to the connected analog-RF systems. If successful, this methodology can be further developed and applied to other types of analog sensors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将创建一种新颖的传感器内防御方法,使最先进的霍尔传感器能够抵御外部电磁干扰 (EMI) 欺骗攻击。文献中的先前工作仅关注模拟射频电子设备的安全性,使它们在设备级别上具有强大的抗电磁干扰能力。然而,与模拟射频电子器件紧密连接的模拟传感器(例如霍尔传感器)的安全性却很少受到关注。如今,许多模拟射频电子设备都与不同的板载霍尔传感器集成。因此,来自非常规攻击的安全威胁可能伴随着板载霍尔传感器的 EMI 欺骗,并且此类攻击可能会传播到连接的模拟射频电子设备,从而损害整个系统的完整性。例如,已经证明,使用外部磁场欺骗太阳能逆变器的霍尔传感器的攻击可以故意扰乱电网频率、电压,并注入虚假的有功或无功功率,从而破坏电力系统。类似的攻击也可能发生在其他关键系统中,因为板载霍尔传感器因其低成本、高线性度而广泛应用于各种射频应用(例如自动驾驶车辆、智能电网、机器人、工业工厂、导弹制导和军事防御)。和准确性。因此,研究界需要解决如此重要的安全挑战。该项目将对模拟射频系统的安全和安保设计产生重大影响。该项目的成果将通过出版物和演示文稿传播给包括学术界、工业界和政府在内的更广泛的社区。此外,拟议研究活动的结果将纳入课程作业和其他教育活动中。仅使模拟射频电子器件变得稳健可能无法有效确保连接系统的安全性,防止通过板载模拟霍尔效应传感器进行外部 EMI 欺骗攻击。这项研究将开发一种新颖的传感器内嵌入式核心的硬件软件架构。 传感器内嵌入式内核将使用传感器内存储块外设将霍尔传感器与数字信号处理 (DSP) 内核集成,以确保连接的模拟射频系统的安全。检测 EMI 欺骗攻击至关重要,而在受到攻击时保持连接的射频系统正常运行则更为重要。在所提出的架构中,嵌入单个霍尔传感器中的三个等距霍尔元件将用于检测和测量任何类型的外部 EMI 欺骗攻击。将开发一种新颖的算法,通过使用两个不同的平台(即FPGA和DSP内核)将外部EMI欺骗数据与原始信号数据分离,以完成两种不同类型的任务(时间敏感的处理任务和面向控制的任务) ) 分别。 FPGA和DSP内核之间的通信将使用直接内存访问(DMA)来增加带宽。此外,所提出的方法将是低功耗的,并且不会妨碍连接的模拟射频系统的现有数据处理速度和数据速率。该技术不仅可以检测外部 EMI 欺骗攻击,还可以实时包含霍尔传感器内部的攻击,从而使攻击无法进一步传播到连接的模拟射频系统。如果成功,该方法可以进一步开发并应用于其他类型的模拟传感器。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensor Security: Current Progress, Research Challenges, and Future Roadmap (Invited Paper)
传感器安全:当前进展、研究挑战和未来路线图(特邀论文)
Hardware/Software Co-Design for Sensor Security
传感器安全的硬件/软件协同设计
  • DOI:
    10.1109/mc.2023.3248779
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Barua, Anomadarshi;Al Faruque, Mohammad Abdullah
  • 通讯作者:
    Al Faruque, Mohammad Abdullah
HALC: A Real-time In-sensor Defense against the Magnetic Spoofing Attack on Hall Sensors
HALC:针对霍尔传感器磁欺骗攻击的实时传感器内防御
  • DOI:
    10.1145/3545948.3545964
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barua, Anomadarshi;Faruque, Mohammad Abdullah
  • 通讯作者:
    Faruque, Mohammad Abdullah
PreMSat: Preventing Magnetic Saturation Attack on Hall Sensors
PreMSat:防止霍尔传感器的磁饱和攻击
Special Session: Noninvasive Sensor-Spoofing Attacks on Embedded and Cyber-Physical Systems
特别会议:嵌入式和网络物理系统的非侵入式传感器欺骗攻击
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Al Faruque其他文献

Mohammad Al Faruque的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammad Al Faruque', 18)}}的其他基金

SHF: Small: A Design Automation Methodology for Flexible Real-Time Computing based on Split and Early Exit Neural Models
SHF:小型:基于分裂和早期退出神经模型的灵活实时计算的设计自动化方法
  • 批准号:
    2140154
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CPS: TTP Option: Medium: Collaborative Research: Low-Cost, High-Throughput, Cyber-Physical Synthesis of Encrypted DNA
CPS:TTP 选项:中:协作研究:加密 DNA 的低成本、高通量、网络物理合成
  • 批准号:
    1739503
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Defending Side Channel Attacks in Cyber-Physical Additive Layer Manufacturing Systems
EAGER:网络制造:防御网络物理增材层制造系统中的侧通道攻击
  • 批准号:
    1546993
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029461
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
  • 批准号:
    2028406
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Directional Modulation Non-Contiguous OFDM Retrodirective Communication for Secure IoT
EAGER:SARE:用于安全物联网的定向调制非连续 OFDM 反向通信
  • 批准号:
    2028823
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Detecting Zero-Day Side-channel Attacks in Sensor Rich Cyber-Physical Systems
EAGER:SARE:检测传感器丰富的网络物理系统中的零日旁道攻击
  • 批准号:
    2028782
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Physically disordered nanostructures for lightweight and secure authentication on CMOS platform
EAGER:SARE:物理无序纳米结构,可在 CMOS 平台上实现轻量级安全身份验证
  • 批准号:
    2028997
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了