NSF EAGER: Ionic communication: high resolution, non-invasive data communication for bioelectronics
NSF EAGER:离子通信:用于生物电子学的高分辨率、非侵入性数据通信
基本信息
- 批准号:2027135
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to send and receive information from inside the body is of key importance for scientific and medical applications. Nearly all implantable electronics devices require communication with the external world to be able to transmit acquired bio-signals for analysis or receive instructions from external devices to modulate their interactions with tissue. However, this task is inherently challenging because the communication method should be (i) non-invasive, meaning no components extruding through tissue, (ii) low-power, to be able to acquire data continuously over an extended period of time (iii) high-speed, to allow transmission of complex biological data acquired, (iv) controllable, to allow communication over a defined depth in the tissue. The overall objective of this work is to develop an ion-based, high-speed communication scheme to enable non-invasive and safe transmission of signals without the need of components that extrude through tissue. The rationale for the proposed work is that ions in biological tissue can be used to transfer information at high speeds and low power to the outside of body. The educational goal of the project is to provide hands-on experience for students by developing fully bio-compatible and inexpensive devices for ionic communication. The proposed research is expected to not only advance the field of bioelectronics by improving understanding of key principles governing communication across the body, but also result in positive impact to society at large. To understand and modulate physiologic functions, implantable bioelectronic devices should be capable of safely communicating the high spatiotemporal resolution bio-signals with high speed and low power consumption to devices located outside the body. This communication and data transfer should be accomplished through a non-invasive path with no elements that extrude through tissue to minimize discomfort, mobility complications, and risk of tissue damage or infection. Ionic communication, which leverages the ion-rich nature of biological tissue to transmit signals through intact surfaces, could fulfill these requirements and address the limitations of current electronic charge carrier-based approaches. However, there is a clear lack of knowledge regarding how to use ionic communication to establish a high speed, low-power, and biocompatible communication medium across biological tissue. The objective of the proposed research is to combine optimal properties for an abiotic/biotic transmission interface: biocompatibility, conformability, miniaturization, low power consumption, efficient interaction with the body’s ionic signals, and ability to transmit data at speeds relevant to electrophysiological processes. Specific aims for the project are: (1) establish the physical, material and geometrical requirements to enable ionic communication; and (2) define the physical parameters that govern the spatial propagation of ionic signals through tissue. Overall, ionic communication could result in significant medical and social benefits by simplifying data transmission from bioelectronic devices and enabling application to situations in which use of transcutaneous connectors or bulky implanted electronics is prohibitive.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从体内发送和接收信息的能力对于科学和医疗应用至关重要。几乎所有植入式电子设备都需要与外部世界进行通信,以便能够传输获取的生物信号进行分析或从外部设备接收指令。然而,这项任务本质上是具有挑战性的,因为通信方法应该是(i)非侵入性的,这意味着没有组件穿过组织,(ii)低功耗,以便能够在长时间内连续采集数据。一段时间(iii)高速,至允许传输所获取的复杂生物数据,(iv) 可控,以允许在组织中的定义深度上进行通信这项工作的总体目标是开发一种基于离子的高速通信方案,以实现非侵入性和安全性。无需穿过组织的组件即可传输信号。这项工作的基本原理是生物组织中的离子可用于以高速和低功率将信息传输到身体外部。该项目的教育目标是。通过开发为学生提供实践经验完全生物相容且廉价的离子通信设备预计不仅可以通过提高对控制整个身体通信的关键原理的理解来推进生物电子学领域,而且还可以对整个社会产生积极的影响。为了调节生理功能,植入式生物电子设备应该能够以高速和低功耗将高时空分辨率的生物信号安全地传送到位于体外的设备,这种通信和数据传输应该通过非侵入性路径来完成。元素离子通信利用生物组织富含离子的性质通过完整的表面传输信号,可以满足这些要求并解决当前电子电荷的局限性。然而,对于如何使用离子通信在生物组织中建立高速、低功耗和生物相容性通信介质,人们显然缺乏了解。拟议研究的目标是结合最佳特性。非生物/生物传播界面:生物相容性,一致性、小型化、低功耗、与身体离子信号的有效相互作用以及以与电生理过程相关的速度传输数据的能力该项目的具体目标是:(1)建立实现离子通信的物理、材料和几何要求。 ;和(2)定义控制离子信号通过组织的空间传播的物理参数总体而言,离子通信可以通过简化生物电子设备的数据传输并使其能够应用于使用的情况,从而带来重大的医疗和社会效益。经皮连接器或笨重的植入电子设备是禁止的。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics
通过完全植入的前端复用嵌入式神经电子学对神经回路病理学进行响应性操纵
- DOI:10.1073/pnas.2022659118
- 发表时间:2021-05-18
- 期刊:
- 影响因子:0
- 作者:Zhao Z;Cea C;Gelinas JN;Khodagholy D
- 通讯作者:Khodagholy D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dion Khodagholy其他文献
C2JM32188B 19498..19505
C2JM32188B 19498..19505
- DOI:
10.1016/j.jab.2017.06.001 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Leslie H. Jimison;Adel Hama;Xenofon Strakosas;Vanessa Armel;Dion Khodagholy;E. Ismailova;George G. Malliaras;Bjorn Winther;M. Owens - 通讯作者:
M. Owens
Dion Khodagholy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dion Khodagholy', 18)}}的其他基金
NCS-FO: Conformable, expandable neural interface devices to assay natural cognitive maturation of the developing brain
NCS-FO:顺应性、可扩展的神经接口设备,用于测定发育中大脑的自然认知成熟度
- 批准号:
2219891 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
CAREER: Soft, biocompatible ion-based transistors for responsive neuroelectronic devices
职业:用于响应神经电子设备的柔软、生物相容性离子晶体管
- 批准号:
1944415 - 财政年份:2020
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
相似国自然基金
渴望及其对农村居民收入差距的影响研究
- 批准号:71903117
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
- 批准号:71502075
- 批准年份:2015
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Influence of Ionic Liquids on Product Selectivity in CO2 Electroreduction over Copper Catalysts
EAGER:离子液体对铜催化剂 CO2 电还原产物选择性的影响
- 批准号:
1935957 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Engineering the Ionic Polymer Phase Surface Properties in a PEM Fuel Cell Catalyst Layer
EAGER:设计 PEM 燃料电池催化剂层中的离子聚合物相表面特性
- 批准号:
1518755 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Engineering the Ionic Polymer Phase Surface Properties in a PEM Fuel Cell Catalyst Layer
EAGER:设计 PEM 燃料电池催化剂层中的离子聚合物相表面特性
- 批准号:
1518755 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Rational Modification of Enzyme Charge for Enhanced Biocatalyst Stability in Ionic Liquids
EAGER:合理修饰酶电荷以增强离子液体中生物催化剂的稳定性
- 批准号:
1347737 - 财政年份:2013
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Exploring a New Bi-ionic Transport Mechanism in Dual-Phase Electrochemical CO2 Separation Membranes
EAGER:探索双相电化学 CO2 分离膜中的新型双离子传输机制
- 批准号:
1340269 - 财政年份:2013
- 资助金额:
$ 8万 - 项目类别:
Standard Grant