Collaborative Research: Physical and biological controls on ocean carbon and oxygen uptake in the western North Pacific

合作研究:北太平洋西部海洋碳和氧吸收的物理和生物控制

基本信息

项目摘要

Understanding the mechanisms that determine when and how the ocean takes up carbon from the atmosphere is important to our fundamental knowledge of ocean biogeochemistry and to our ability to model future climate. Air-sea fluxes of oxygen are also relevant to climatic variability, and surface oxygen can act as a tracer of biological carbon production and export as well as of important physical processes. The Kuroshio Extension region of the northwest Pacific Ocean is an area of strong carbon dioxide uptake and a site of wintertime watermass formation, with Subtropical Mode Water formed to the south of the Kuroshio Extension and lighter and denser Central Mode Water formed to the north. These mode waters then sink below the surface, moving carbon dioxide to the ocean interior. There are very few wintertime vertical profiles of any carbon system parameter in these mode water formation regions and no fully resolved winter or annual cycles of measurements. In this project, the investigators will deploy robotic profiling floats to make these needed measurements. They will combine the float data with numerical modeling to advance understanding of mode water formation and air-sea fluxes of carbon dioxide and oxygen in this important region. This proposal will fund an early career scientist and expand expertise in and capability for biogeochemical profiling float operations at the University of Hawai’i, providing a foundation for future work in autonomous biogeochemical platforms. This proposal will fund a graduate student in their Ph.D. work and multiple summer undergraduate researchers. Students will gain exposure to the complementary fields of marine chemistry, ocean physics, and climate models. The team will investigate carbon and oxygen budgets in the northwest Pacific from the following: new float observations of oxygen, nitrate, and estimated dissolved inorganic carbon; longer-term float temperature and salinity observations for water mass analysis; and model output. They will deploy biogeochemical Argo floats capable of measuring pH in the heart of the Subtropical and Central Mode Water formation regions in the Kuroshio Extension to provide vertical profiles of oxygen, nitrate, and, especially, estimates of dissolved inorganic carbon. They will use these observations to both calculate the drivers of air-sea carbon dioxide and oxygen fluxes and to validate model output for further analysis. Western boundary currents, such as the Kuroshio Extension, are areas of significant carbon dioxide uptake, but the relative importance of biology and physics to that uptake and its variability on large temporal and spatial scales is not well understood. The project has three main goals: (1) to determine what fraction of the CO2 and O2 uptake in the North Pacific is the result of mode water formation and subduction, (2) to determine how the physical and biological processes that drive air-sea fluxes vary spatially in the Kuroshio Extension region, and (3) to analyze the drivers of interannual and decadal variability of mode water formation and related gas fluxes in the Kuroshio Extension region and determine how that variability is linked to the larger climate system. The new observations will be evaluated in the larger context of multiple decades of observations from ships and almost two decades of physical observations from profiling floats. The team will use model output to diagnose physical drivers of air-sea fluxes and to link the observed mechanisms to longer-term variability and climate processes. The data collected will represent the first seasonally resolved profiles of oxygen, nitrate, and derived DIC in a western boundary current and will be of use to a broad community of researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解海洋何时以及如何从大气中吸收碳的机制对于我们了解海洋生物地球化学的基础知识以及我们模拟未来气候的海气通量的能力非常重要,这也与气候变化和地表氧气有关。可以作为生物碳生产和输出以及重要物理过程的示踪剂,西北太平洋的黑潮延伸区是二氧化碳吸收强烈的区域,也是冬季水团形成的场所,具有副热带模式水。形成的黑潮延伸区的南部和北部形成的较轻且较稠密的中心模式水随后沉入地表以下,将二氧化碳转移到海洋内部。这些区域中的任何碳系统参数都很少有冬季垂直剖面。在这个项目中,研究人员将部署机器人剖面浮标来进行这些所需的测量,他们将浮标数据与数值模型结合起来,以推进对模式水形成和空气的详细了解。 - 海洋中二氧化碳和氧气的通量该提案将资助一名早期职业科学家,并扩大夏威夷大学生物地球化学剖面浮式操作的专业知识和能力,为自主生物地球化学平台的未来工作奠定基础。他们的博士工作和多名夏季本科研究人员将接触海洋化学、海洋物理学和气候模型的互补领域,该团队将通过以下内容研究西北太平洋的碳和氧预算:新的浮标观测。氧气、硝酸盐和估计溶解的无机碳;用于水质量分析和模型输出的长期浮子温度和盐度观测;他们将部署能够测量黑潮延伸区的副热带和中部模式水形成区域的 pH 值的生物地球化学浮子。他们将利用这些观测结果来计算空气-海洋二氧化碳和氧气通量的驱动因素,并验证模型输出以进行进一步分析。黑潮延伸区等洋流是大量二氧化碳吸收的区域,但生物学和物理学对这种吸收的相对重要性及其在大时间和空间尺度上的变化尚不清楚。该项目有三个主要目标:(1。 ) 确定北太平洋吸收的二氧化碳和氧气的比例是水形成和俯冲模式的结果,(2) 确定驱动海气通量的物理和生物过程如何在黑潮延伸区空间变化,和(3) 分析黑潮延伸区水形成模式和相关气体通量的年际和年代际变化的驱动因素,并确定这种变化如何与更大的气候系统联系起来。新的观测结果将在更大的多重背景下进行评估。该团队将利用数十年的船舶观测和近二十年的剖面浮标物理观测来诊断海气通量的物理驱动因素,并将所收集的数据与长期变化和气候过程联系起来。代表第一个季节性解决的该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manfredi Manizza其他文献

Manfredi Manizza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

儿童白血病生存者身体活动的行为改变整合机制与亲子进阶式移动干预研究
  • 批准号:
    72374231
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
家庭视角下儿童身体活动促进的干预策略研究:基于SCT-HAPA-FFT整合模型
  • 批准号:
    72374012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
我国居家脊髓损伤人群身体活动的环境-个人交互影响机制和同伴远程促进模式研究
  • 批准号:
    72374229
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大肠杆菌肠型与高龄老人身体机能衰退的关系及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于混合智能的CT影像下身体成分组织量化分析方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Feedbacks in the Coastal Alaskan Arctic during Landfast Ice Freeze-up
合作研究:阿拉斯加北极沿海地区陆地冰冻期间的物理反馈
  • 批准号:
    2336694
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Feedbacks in the Coastal Alaskan Arctic during Landfast Ice Freeze-up
合作研究:阿拉斯加北极沿海地区陆地冰冻期间的物理反馈
  • 批准号:
    2336693
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical Feedbacks in the Coastal Alaskan Arctic during Landfast Ice Freeze-up
合作研究:阿拉斯加北极沿海地区陆地冰冻期间的物理反馈
  • 批准号:
    2336695
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了