CAREER: Ubiquitous and Time-Critical Federated Learning with Cooperative Mobile Edge Networking

职业:具有协作移动边缘网络的无处不在且时间紧迫的联合学习

基本信息

  • 批准号:
    2047761
  • 负责人:
  • 金额:
    $ 50.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Federated learning (FL) enables Internet-of-Things (IoT) devices at the network edge to collaboratively learn a shared prediction model while keeping all personal data on the device. However, the current cloud-based FL fails to meet the latency requirements of delay-sensitive IoT applications due to the long-distance transmission between IoT devices and the cloud. This project aims to enable ubiquitous and time-critical FL at the wireless edge to support delay-sensitive and data-driven IoT applications. The project will fulfill the needs of many compelling applications with significant economic and societal impacts such as augmented reality, autonomous driving, mobile healthcare, and smart manufacturing. The project’s educational agenda includes outreach to K-12 with educational summer camps for high-school teachers, mentoring undergraduate and graduate students, especially from minority and underrepresented groups, in the research, and disseminating research outcomes to students and industry partners through new course development and seminars.This project develops a novel Federated learning (FL) framework based on cooperative mobile edge networking that can efficiently support learning and decision making on distributed Internet-of-Things (IoT) data with high accuracy, low latency, and guaranteed privacy. Three interconnected research thrusts are investigated in this project: 1) design of novel network-aware learning algorithms under a two-level network structure to ensure efficient and effective model training from decentralized data on IoT devices over wireless edge networks; 2) jointly optimize resource allocation and learning based on deep reinforcement learning to learn an accurate model rapidly under system heterogeneity and resource constraints; 3) develop novel differential privacy techniques to rigorously protect the privacy of personal data on IoT devices while maintaining high model accuracy and reducing communication cost. The proposed research will enable next-generation wireless edge networks that support a plethora of delay-sensitive and data-driven IoT applications. The proposed research will benefit not only the wireless networking but also machine learning research communities by bridging the gap between the evolving mobile computing and networking technologies and rapidly advancing machine learning techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在网络边缘的联合学习(FL)设备可以协作学习该设备上的共享个人数据,但是,由于物联网设备之间的长距离,基于云云在无线边缘上进行了关键的FL,以支持延迟敏感的IoT应用程序包括与K-12的宣传,并为高中生的教师和研究生提供了教育,尤其是来自少数群体和代表性不足的团体的研究生,在研究成果中,通过新的课程开发和研讨会来尝试合作伙伴。在此项目中,支持分布式互联网(IoT)数据的分布式学习和决策。从无线边缘网络上的分散数据的有效培训;物联网设备上的个人数据在维持高模型的同时降低了沟通成本。通过弥合差距,差距是事件和网络技术和迅速发展机器学习技术之间的差距。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-Efficient Distributed Machine Learning at Wireless Edge with Device-to-Device Communication
Agent-Level Differentially Private Federated Learning via Compressed Model Perturbation
Concentrated Differentially Private Federated Learning With Performance Analysis
  • DOI:
    10.1109/ojcs.2021.3099108
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Rui Hu;Yuanxiong Guo;Yanmin Gong
  • 通讯作者:
    Rui Hu;Yuanxiong Guo;Yanmin Gong
Scalable and Low-Latency Federated Learning With Cooperative Mobile Edge Networking
  • DOI:
    10.1109/tmc.2022.3216837
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Zhenxiao Zhang;Zhidong Gao;Yuanxiong Guo;Yanmin Gong
  • 通讯作者:
    Zhenxiao Zhang;Zhidong Gao;Yuanxiong Guo;Yanmin Gong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanmin Gong其他文献

Practical Collaborative Learning for Crowdsensing in the Internet of Things with Differential Privacy
具有差异隐私的物联网中群体感知的实用协作学习
Efficient, Effective, and Realistic Website Fingerprinting Mitigation
高效、有效且现实的网站指纹识别缓解
Quasi-convex Optimization of Metrics in Biometric Score Fusion
生物特征得分融合中指标的拟凸优化
A stochastic game approach to cyber-physical security with applications to smart grid
网络物理安全的随机博弈方法及其在智能电网中的应用
Supplementary Material of Workie-Talkie: Accelerating Federated Learning by Overlapping Computing and Communications via Contrastive Regularization
Workie-Talkie 补充材料:通过对比正则化重叠计算和通信来加速联邦学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Chen;Qiyu Wan;Pavana Prakash;Lan Zhang;Xu Yuan;Yanmin Gong;Xin Fu;Miao Pan
  • 通讯作者:
    Miao Pan

Yanmin Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanmin Gong', 18)}}的其他基金

CRII: NeTS: Embracing Dynamic Spectrum Sharing without Privacy Concerns
CRII:NeTS:拥抱动态频谱共享,无需担心隐私问题
  • 批准号:
    1850523
  • 财政年份:
    2019
  • 资助金额:
    $ 50.9万
  • 项目类别:
    Standard Grant

相似国自然基金

生活中无处不在的大学数学知识的探究、应用与编撰
  • 批准号:
    12026505
  • 批准年份:
    2020
  • 资助金额:
    6.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Computer-guided Action Planning to Support Physical Activity (CAPPA) for Employees with Chronic Knee Symptoms
计算机引导的行动计划,支持患有慢性膝关节症状的员工进行体力活动 (CAPPA)
  • 批准号:
    10585564
  • 财政年份:
    2022
  • 资助金额:
    $ 50.9万
  • 项目类别:
Development of an ubiquitous diagnostic system of trombosis available at the time of emergency disaster
开发紧急灾害时可使用的普遍存在的血栓诊断系统
  • 批准号:
    20K04507
  • 财政年份:
    2020
  • 资助金额:
    $ 50.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SCH: INT: VOLI: Voice Assistant for Quality of Life and Healthcare Improvement in Aging Populations
SCH:INT:VOLI:改善老龄化人口生活质量和医疗保健的语音助手
  • 批准号:
    10017366
  • 财政年份:
    2019
  • 资助金额:
    $ 50.9万
  • 项目类别:
SCH: INT: VOLI: Voice Assistant for Quality of Life and Healthcare Improvement in Aging Populations
SCH:INT:VOLI:改善老龄化人口生活质量和医疗保健的语音助手
  • 批准号:
    10019457
  • 财政年份:
    2019
  • 资助金额:
    $ 50.9万
  • 项目类别:
Open community platform for hearing aid research
助听器研究开放社区平台
  • 批准号:
    9314530
  • 财政年份:
    2016
  • 资助金额:
    $ 50.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了