CAREER: Entanglement of Active Polymers
职业:活性聚合物的缠结
基本信息
- 批准号:2047587
- 负责人:
- 金额:$ 53.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARY This award supports theoretical, mathematical, and computational research, and education on active polymers which can drive biological function by exerting forces and changing their shape. Biological cells contain active polymers - long filamentous molecules - that can consume energy and change connectivity and architecture during the cell cycle. The PI aims to develop a method that can provide insight into the dynamic reorganization of such systems.The PI aims to investigate whether the many-chain geometry and topology of these filaments in combination with active interconnections among polymers alone can describe key elements that account for the mechanics of active matter filaments in many contexts. This research examines this hypothesis using an approach that involves mathematical ideas from the field of topology and computer simulation to obtain results that can be compared to experiments. The PI aims to use rigorous methods from mathematics to understand, model, and eventually control how polymer filaments entangle in active physical systems with biological applications. This project will lead to a better understanding of living matter and will advance the smart manufacturing of new soft glassy materials. This project also supports outreach activities, including public talks, university outreach programs, and the Challenger STEM Center, which can present aspects of the research to a potentially wide audience. Software and simulation techniques developed through this project will be shared broadly with the community. Results will be presented by the PI and her students at interdisciplinary conferences, including those organized by the PI. Additionally, the PI is strongly committed to broadening participation of underrepresented minorities and women in STEM; new courses will be developed to train interdisciplinary scientists in 21st-century mathematical tools. TECHNICAL SUMMARY Active matter is used to classify a range of physical systems that are driven out of equilibrium by the presence of ''active'' constituents that exert forces by dissipating energy. Conventional polymer physics arguments provide limited understanding of the dynamic reorganization of such systems. A challenge in the field is to connect properties of isolated filaments to properties of a collection of filaments. This relates to a big challenge in the field of entangled polymers, which is how to measure entanglement of open curves in 3-space. This project will use topology, modeling, and simulation to measure topological entanglement in active matter filaments and provide a new model for its mechanics. This research advances knowledge and breaks existing technical barriers (1) in topology by defining and studying the Jones polynomial of a collection of open curves in 3-space and in systems employing Periodic Boundary Conditions and (2) in understanding entanglement effects in materials science and biology, by providing a new model for the viscoelastic response of active matter filaments. This work is aimed to lead to predictive modeling of the behavior of such systems with the possibility of controlling their functions by judicious selection of their chemical compositions and structures, for example, by changing the number of active cross-links or the type of cross-linking motifs. This award is jointly funded through the Condensed Matter and Materials Theory Program in the Division of Materials Research, and the Topology and Mathematical Biology Programs in the Division of Mathematical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理论,数学和计算研究以及有关活性聚合物的教育,这些研究可以通过施加力和改变其形状来推动生物学功能。生物细胞含有活性聚合物 - 长丝分子 - 可以在细胞周期中消耗能量并改变连通性和结构。 PI的目的是开发一种可以洞悉此类系统的动态重组的方法。PI旨在研究这些细丝的多链几何形状和拓扑结构以及仅聚合物之间的主动互连的多链几何形状和拓扑结构是否可以描述许多在许多情况下占活性物质机制的关键元素。这项研究使用一种涉及拓扑和计算机模拟领域的数学思想的方法来检查这一假设,以获得可以与实验进行比较的结果。 PI的目的是使用数学中的严格方法来理解,建模,并最终控制聚合物丝如何在活跃物理系统中与生物学应用中纠缠。该项目将使人们对生活物质有更好的了解,并将推动新的软玻璃材料的智能制造。该项目还支持外展活动,包括公众会谈,大学外展计划和挑战者STEM中心,这些中心可以向潜在的受众群体介绍研究的各个方面。通过该项目开发的软件和仿真技术将与社区广泛共享。 PI和她的学生将在跨学科会议上提出结果,包括PI组织的会议。此外,PI强烈致力于扩大代表性不足的少数民族和妇女的参与。将开发新课程,以培训21世纪数学工具中的跨学科科学家。 技术摘要主动物质用于通过存在“主动”成分的存在来对一系列物理系统进行分类,这些物理系统被驱散而驱动,这些成分的成分通过消散能量来施加力。常规聚合物物理学论证提供了对此类系统动态重组的有限理解。该领域的一个挑战是将隔离细丝的属性连接到一丝细丝的属性。这涉及纠缠聚合物领域的巨大挑战,这是如何在3空间中测量开放曲线的纠缠的方法。该项目将使用拓扑,建模和仿真来测量活性物质细丝中的拓扑纠缠,并为其力学提供新的模型。 这项研究通过定义和研究琼斯在三个空间和采用周期性边界条件的系统和(2)在理解材料科学和生物学中使用定期边界条件的系统中的琼斯多项式来提高知识并打破了现有的技术障碍(1),并在材料科学和生物学中使用(2)的系统中进行了多项式。这项工作的目的是通过明智地选择其化学成分和结构来控制其功能,例如通过更改主动交联的数量或交联基序的类型来控制其功能的预测建模。 该奖项是通过材料研究部中的凝结物和材料理论计划共同资助的,以及数学科学系的拓扑和数学生物学计划。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A computational package for measuring Topological Entanglement in Polymers, Proteins and Periodic systems (TEPPP)
- DOI:10.1016/j.cpc.2022.108639
- 发表时间:2023-01-24
- 期刊:
- 影响因子:6.3
- 作者:Herschberg, Tom;Pifer, Kyle;Panagiotou, Eleni
- 通讯作者:Panagiotou, Eleni
The Jones polynomial of collections of open curves in 3-space
3 空间中开曲线集合的琼斯多项式
- DOI:10.1098/rspa.2022.0302
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barkataki, Kasturi;Panagiotou, Eleni
- 通讯作者:Panagiotou, Eleni
The second Vassiliev measure of uniform random walks and polygons in confined space
有限空间中均匀随机游走和多边形的第二个 Vassiliev 测度
- DOI:10.1088/1751-8121/ac4abf
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Smith, Philip;Panagiotou, Eleni
- 通讯作者:Panagiotou, Eleni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleni Panagiotou其他文献
Eleni Panagiotou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleni Panagiotou', 18)}}的其他基金
CAREER: Entanglement of Active Polymers
职业:活性聚合物的缠结
- 批准号:
2246745 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Continuing Grant
相似国自然基金
高维纠缠态直接表征新方案研究
- 批准号:12305034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
向心加速量子系统的纠缠动力学与Unruh效应
- 批准号:12375047
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
一种以原子级精度构筑、操控、纠缠和读出的新型多自旋量子比特平台
- 批准号:92365114
- 批准年份:2023
- 资助金额:68 万元
- 项目类别:重大研究计划
高维量子纠缠增强的量子通信实验研究
- 批准号:12374338
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
类时全息纠缠熵及其基本性质
- 批准号:12375051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
- 批准号:
2339469 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
- 批准号:
EP/Z000556/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Standard Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
- 批准号:
2309238 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Continuing Grant