CAREER: Air Stable and Tunable Bandgap Pb-free Halide Perovskite Materials for Photovoltaic and Photocatalytic Applications
职业:用于光伏和光催化应用的空气稳定且带隙可调的无铅卤化物钙钛矿材料
基本信息
- 批准号:2046944
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This CAREER project aims to develop high efficiency Pb-free perovskite solar cells and determine the stability of these novel materials. Pb-based organic-inorganic halide perovskite (OIHP) solar cells have shown tremendous promise with big leap in efficiency in less than a decade. However, due to presence of Pb and poor stability, these materials may pose issues for widespread use and commercialization of OIHP solar cells. The research community has not yet come up with a high performance alternative to Pb-based OIHP solar cells, primarily due to material defects. This project will develop air-stable and low defect density Pt-Ni and Sn-Ge based perovskite solar cells. Success in this project will result in development of a model system for Pb-free perovskite solar cells with stable buffer and contact materials. Lifetime prediction and levelized cost of energy (LCOE) models will be developed to determine the effect of Pb replacement on cell cost, energy yield, efficiency, degradation rates, encapsulation costs and recycling. In addition to these scientific advancements, PI will train underrepresented minority graduate and undergraduate students on materials for energy applications. This CAREER project will also train the next generation workforce for solar energy jobs in Nevada at community colleges and UNLV. Dedicated workshop series to identify the fundamental roadblocks for development of high efficiency and Pb-free perovskite materials will be hosted in collaboration with academia and industry partners.Organic-inorganic halide perovskites (OIHPs) have shown significant progress as low-cost, solution printable semiconductors with superior optoelectronic properties. For photovoltaic applications, these materials have achieved remarkable power conversion efficiency of 25.2% single-junction and 29.1% perovskite-Si tandem devices. Despite the exceptional performance of OIHPs, toxicity of Pb, thermal stability, and stability due to ion migration are fundamental materials issues that need to be solved. The superior optoelectronic properties of Pb-based OIHPs have not yet been reproduced in Pb-free compositions due to high defect density and low absorption coefficient. The objectives of the proposed research are to develop all inorganic mixed halide-chalcogenide Pb-free perovskite photoabsorbers ABX3 and A2BX6 (A = Cs; B = Ge/Sn, Pt/Ni; X = I, Cl, Br, O, S) with tunable bandgap and high carrier lifetime. Dopant-free inorganic electron and hole transport layers with optimal band offsets will be developed for high efficiency and stable planar solar cells. Proposed work will address following: (1) solution processing of stable mixed halide-chalcogenide Pb-free perovskite thin films with low midgap defect density and high absorption coefficient; (2) stability and degradation mechanisms under junction bias, light illumination, heat, oxygen, UV and humidity; (3) surface and interface defect passivation with improved electron and hole transport layers; (4) high efficiency and stable Pb-free perovskite solar cells; (5) Accelerated stress testing protocols and numerical models for lifetime prediction and LCOE for Pb-free perovskite solar cells; and (6) cost-stability-performance trade-off analysis of Pb vs. Pb-free perovskite solar cells. Achieving a fundamental understanding of how to control the electronic, chemical, electrochemical, and dynamics behavior of Pb-free perovskite photoabsorbers will enable an entirely new generation of wide bandgap semiconductors for PV applications and beyond. Key international collaborations will be formed to address critical challenges for high efficiency Pb-free perovskite solar cells. This project is jointly funded by the division of Electrical, Communications and Cyber Systems (ECCS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目旨在开发高效率的无PB钙钛矿太阳能电池并确定这些新型材料的稳定性。基于PB的有机盐酸卤化物钙钛矿(OIHP)太阳能电池在不到十年的时间内表现出巨大的效率,效率很大。但是,由于存在PB和稳定性较差,这些材料可能会构成OIHP太阳能电池的广泛使用和商业化的问题。研究界尚未提出基于PB的OIHP太阳能电池的高性能替代品,这主要是由于物质缺陷。该项目将开发空气稳定和低缺陷密度PT-NI和基于SN-GE的钙钛矿太阳能电池。该项目的成功将导致开发具有稳定的缓冲液和接触材料的无PB钙钛矿太阳能电池的模型系统。将开发终身预测和水平的能源成本(LCOE)模型,以确定PB替换对细胞成本,能量产量,效率,降解率,封装成本和回收利用的影响。除了这些科学进步外,PI还将培训代表性不足的少数群体毕业生和本科生的能源应用材料。这个职业项目还将培训下一代劳动力,从而在内华达州的社区大学和UNLV培训太阳能工作。专门的研讨会系列旨在确定发展高效率和无PB钙钛矿材料的基本障碍,将与学术界和行业合作伙伴合作举办。有机无机的卤化物钙钛矿(OIHPS)显示出了很大的进步,如低成本,解决方案,溶液溶液可打印的半管子具有优质光电特性。对于光伏应用,这些材料的功率转换效率为25.2%,单式结构为25.2%,钙钛矿 - si串联设备达到了29.1%。尽管OIHP表现出色,PB的毒性,热稳定性和由于离子迁移引起的稳定性是基本的材料问题,需要解决。由于高缺陷密度和低吸收系数,尚未在无PB组合物中复制基于PB的OIHP的上光电特性。拟议的研究的目标是开发所有无机混合卤化物 - 核酸元素PB无PB无PB钙钛矿光吸光器ABX3和A2BX6(a = cs; b = ge/sn,pt/ni; x = i,x = i,cl,cl,br,br,o,s)具有可调的带盖和高载体寿命。将开发出具有最佳带偏移量的无掺杂无机电子和孔传输层,以高效和稳定的平面太阳能电池。建议的工作将解决以下:(1)稳定的混合卤化物 - chalcogenide pb无PB的钙钛矿薄膜的溶液处理,具有低MidGAP缺陷密度和高吸收系数; (2)在连接偏置,光照明,热,氧气,紫外线和湿度下的稳定性和降解机制; (3)具有改善的电子和孔传输层的表面和界面缺陷钝化; (4)高效率和稳定的无PB钙钛矿太阳能电池; (5)用于终生预测的加速应力测试方案和数值模型和无PB钙钛矿太阳能电池的LCOE; (6)PB与无PB的钙钛矿太阳能电池的成本稳定性 - 性能权衡分析。对如何控制无PB钙钛矿光吸光器的电子,化学,电化学和动力学行为的基本了解将使PV应用及其他地区的全新一代宽带隙半导体。将成立主要的国际合作,以应对高效率无PB钙钛矿太阳能电池的关键挑战。该项目由电气,通信和网络系统(ECC)和启发竞争性研究的既定计划(EPSCOR)共同资助。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子来评估的。和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metal Halide Perovskite Nanostructures and Quantum Dots for Photocatalytic CO2 Reduction: Prospects and Challenges
- DOI:10.1016/j.mtener.2022.101230
- 发表时间:2022-12
- 期刊:
- 影响因子:9.3
- 作者:Huilong Liu;S. Bansal
- 通讯作者:Huilong Liu;S. Bansal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shubhra Bansal其他文献
Shubhra Bansal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shubhra Bansal', 18)}}的其他基金
CAREER: Air Stable and Tunable Bandgap Pb-free Halide Perovskite Materials for Photovoltaic and Photocatalytic Applications
职业:用于光伏和光催化应用的空气稳定且带隙可调的无铅卤化物钙钛矿材料
- 批准号:
2342007 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
硅基纳米空气通道晶体管平板型阴极发射稳定性增强的物理机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锂空气电池用稳定的全氟磺酸锂基聚合物电解质的制备及性能研究
- 批准号:22179082
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
高稳定性和利用率的金属负极用于锂−空气电池的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
翅膀残缺昆虫的运动学观测、空气动力学和动稳定性研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
空气稳定的三明治结构石墨炔/红磷@石墨炔钠离子电池负极的设计及性能与机理研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Air Stable and Tunable Bandgap Pb-free Halide Perovskite Materials for Photovoltaic and Photocatalytic Applications
职业:用于光伏和光催化应用的空气稳定且带隙可调的无铅卤化物钙钛矿材料
- 批准号:
2342007 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10269911 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10681360 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10468922 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
9977573 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别: