CAREER: Topological Descriptors

职业:拓扑描述符

基本信息

  • 批准号:
    2046730
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Comparing topological spaces, especially those arising from noisy data, is difficult. Topological data analysis (TDA) captures the 'shape' of data with descriptors (e.g., persistence diagrams and Reeb graphs). Individually, these topological descriptors have proven to be powerful data-analysis tools; however, a single topological descriptor is often not rich enough to capture the intricacies of large, complex data that arises in real applications. For that reason, this project develops a framework for studying topological spaces and data by transforming them into families of descriptors that capture the topology of different 'views' of the data. Studying this family of descriptors enables new methods for summarizing and comparing topological spaces, and creates a pathway for their use in statistical settings. As a result, this project will develop usable, theoretically-grounded data-analysis techniques that will enable TDA for large complex data, including networks, images, and point clouds. Through the research activities, the investigator will train graduate and undergraduate students in interdisciplinary research, and special efforts will be made to recruit first-generation and underrepresented minority students. The proposed educational activities will promote a sense of belonging of first-generation and underrepresented minority students as graduate students in STEM, and, more generally, as future academics in interdisciplinary domains.More specifically, this project builds the foundations for representing and comparing large, complex topological spaces and data sets through parameterized families of topological descriptors, where a topological descriptor is any summary of a topological space. These families of topological descriptors are called topological transforms. The two objectives to accomplish this are: (1) Studying topological transforms and quantifying their ability to represent topological spaces. The project team will study existing transforms, reframe other topological and data analysis concepts as a topological transform, and propose new transforms. By allowing a diverse set of topological descriptors (from persistence diagrams to Euler characteristic curves to small graphs) and a choice of parameterization set (e.g., subspaces or ambient directions), the topological transform framework is flexible. (2) Developing the statistical tools necessary for using topological transforms for data summarization and comparison. In doing so, the project team will define distances between transforms and study the transforms as distributions over spaces of topological descriptors. Throughout, theoretical developments will be grounded in applications, thus establishing mathematical foundations and algorithmic developments that address core issues in analyzing data from real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
比较拓扑空间,尤其是由噪声数据产生的拓扑空间,是很困难的。 拓扑数据分析 (TDA) 使用描述符(例如持久性图和 Reeb 图)捕获数据的“形状”。 单独来看,这些拓扑描述符已被证明是强大的数据分析工具。然而,单个拓扑描述符通常不够丰富,无法捕获实际应用中出现的大量复杂数据的复杂性。 因此,该项目开发了一个框架,通过将拓扑空间和数据转换为捕获数据不同“视图”拓扑的描述符系列,来研究拓扑空间和数据。 研究这一系列描述符可以提供总结和比较拓扑空间的新方法,并为它们在统计环境中的使用创造一条途径。 因此,该项目将开发可用的、有理论依据的数据分析技术,使 TDA 能够用于大型复杂数据,包括网络、图像和点云。 通过研究活动,研究者将培养跨学科研究的研究生和本科生,并将特别努力招收第一代和代表性不足的少数民族学生。 拟议的教育活动将促进第一代和代表性不足的少数族裔学生作为 STEM 研究生的归属感,更广泛地说,作为跨学科领域的未来学者。更具体地说,该项目为代表和比较大型、通过拓扑描述符的参数化族来描述复杂的拓扑空间和数据集,其中拓扑描述符是拓扑空间的任何摘要。 这些拓扑描述符族称为拓扑变换。 实现这一目标的两个目标是:(1)研究拓扑变换并量化其表示拓扑空间的能力。 项目团队将研究现有的变换,将其他拓扑和数据分析概念重新构建为拓扑变换,并提出新的变换。 通过允许不同的拓扑描述符集(从持久图到欧拉特征曲线到小图)和参数化集(例如子空间或环境方向)的选择,拓扑变换框架是灵活的。 (2) 开发使用拓扑变换进行数据汇总和比较所需的统计工具。 在此过程中,项目团队将定义变换之间的距离,并将变换研究为拓扑描述符空间上的分布。 自始至终,理论发展都将以应用为基础,从而建立数学基础和算法开发,解决分析现实应用数据的核心问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Path-Connectivity of Fréchet Spaces of Graphs
图的 Fréchet 空间的路径连通性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chambers, Erin;Fasy, Brittany Terese;Holmgren, Benjamin;Majhi, Sushovan;Wenk, Carola
  • 通讯作者:
    Wenk, Carola
Combinatorial Conditions for Directed Collapsing
定向塌陷的组合条件
  • DOI:
    10.1007/978-3-030-95519-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belton, Robin;Brooks, Robyn;Ebli, Stefania;Fajstrup, Lisbeth;Fasy, Brittany Terese;Sanderson, Nicole;Vidaurre, Elizabeth
  • 通讯作者:
    Vidaurre, Elizabeth
DBSpan: Density-Based Clustering Using a Spanner, With an Application to Persistence Diagrams
DBSpan:使用 Spanner 的基于密度的集群以及持久性图的应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fasy, Brittany Terese;Millman, David L.;Pryor, Elliott;Stouffer, Nathan
  • 通讯作者:
    Stouffer, Nathan
Extremal event graphs: A (stable) tool for analyzing noisy time series data
极值事件图:用于分析噪声时间序列数据的(稳定)工具
  • DOI:
    10.3934/fods.2022019
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Belton, Robin;Cummins, Bree;Gedeon, Tomáš;Fasy, Brittany Terese
  • 通讯作者:
    Fasy, Brittany Terese
A Domain-Oblivious Approach for Learning Concise Representations of Filtered Topological Spaces for Clustering
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brittany Fasy其他文献

Brittany Fasy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brittany Fasy', 18)}}的其他基金

Building a Montana Computing Consortium
建立蒙大拿州计算联盟
  • 批准号:
    2221684
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Topology for Data Science: An Introductory Workshop for Undergraduates
数据科学拓扑:本科生入门研讨会
  • 批准号:
    1955925
  • 财政年份:
    2020
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Indian Education in Computing: a Montana Story
合作研究:印度计算机教育:蒙大拿州的故事
  • 批准号:
    2031795
  • 财政年份:
    2020
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    1854336
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
  • 批准号:
    1664858
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Improving the Pipeline for Rural and American Indian Students Entering Computer Science Via Storytelling
通过讲故事改善农村和美国印第安学生进入计算机科学的渠道
  • 批准号:
    1657553
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Geometric and Topological Algorithms for Analyzing Road Network Data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
  • 批准号:
    1618605
  • 财政年份:
    2016
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
  • 批准号:
    1557716
  • 财政年份:
    2015
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant

相似国自然基金

多自由参数时滞系统完全稳定性问题:代数几何方法和拓扑学视角
  • 批准号:
    62303100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于拓扑学优化的负极异质界面设计及力/电化学耦合行为研究
  • 批准号:
    12302124
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耐碳青霉烯类鲍曼不动杆菌生物被膜形成相关分子互作网络的代数拓扑学研究及治疗意义
  • 批准号:
    82273978
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
拓扑学增强的弱监督学习模型对多模态重离子放疗影像的靶区勾画
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
值域为树的函数空间的无限维拓扑学及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
Collaborative Research: QRM: Microstructure Manifold Analysis Using Hierarchical Set of Morphological, Topological, and Process Descriptors
合作研究:QRM:使用形态、拓扑和过程描述符的分层集进行微观结构流形分析
  • 批准号:
    1906344
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
DELTA: Descriptors of Energy Landscape by Topological Analysis
DELTA:拓扑分析的能源景观描述
  • 批准号:
    1934725
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: QRM: Microstructure Manifold Analysis Using Hierarchical Set of Morphological, Topological, and Process Descriptors
合作研究:QRM:使用形态、拓扑和过程描述符的分层集进行微观结构流形分析
  • 批准号:
    1906194
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
  • 批准号:
    1664858
  • 财政年份:
    2017
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了