CAREER: Self-Organization of Micro-Particles with Light and Sound

职业:利用光和声音自组织微粒

基本信息

  • 批准号:
    2046261
  • 负责人:
  • 金额:
    $ 54.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Non-Technical Abstract:Scientists have long known that one can dramatically alter the properties of a material by patterning it on a microscopic scale. Doing so, however, presents a major challenge: this patterning must happen at a microscopic scale but over large distances, preventing the use of direct techniques like 3D printing. There is an alternative: biological organisms are able to produce complex structure using the self-organization of basic chemical components with tuned interactions. Doing something similar with manmade materials requires a better understanding of the self-organization process, as well as practical methods for engineering forces among microscopic particles. This project explores an effect known as "optical binding", which induces complex forces between clusters of particles using light. The research team is developing new experimental and numerical tools to explore the range of active and passive structures that can be generated using this force. In addition, the researchers are conducting proof of principle research on "acoustic binding", a similar effect which uses sound instead of light. The long term aim of both efforts is to exploit these novel tools to better understand self-organization in general, as well as to enable a new generation of manmade materials for industrial, defense, and consumer applications. The project also includes efforts to increase participation of underrepresented groups in STEM fields at the middle school through graduate level through integrated education and research opportunities. In particular, the researchers are developing a new course on experimental physics for Middle and High school students in collaboration with the Bobcat Summer STEM Academy at UC Merced; rather than relying on ‘canned’ physics experiments, this course exposes students to the complete lifecycle of a scientific experiment, from design through execution and data analysis.Technical Abstract:Understanding self-organization is of interest for many fields of science, including biology, chemistry, physics, and engineering. Colloidal systems have emerged as a useful experimental platform to study this phenomenon, as various techniques exist to modify the forces between colloidal particles. Despite this, there are limits to the type of forces than can be produced: they are typically short range and can only be modified during the synthesis stage. This project is studying an effect known as optical binding, which uses light to induce multi-particle interactions which are long range, directional, pairwise non-conservative, and can be altered in real time. Additionally, the project includes proof-of-principle research on acoustic binding, which produces similar forces in an athermal and inertial regime. The research team is using novel numerical and experimental methods to study both types of force in detail and exploring how these forces modify the self-organization of many-particle systems. This provides insights into how feats of self-organization are performed in the natural world, and how they could be exploited to create new manmade materials with complex microstructure. In addition to its research aims, this project also includes integrated outreach efforts to increase participation of underrepresented groups in STEM at the middle school through graduate level through research opportunities and summer programs for students and their teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:科学家们早就知道,可以通过在微观尺度上形成图案来显着改变材料的特性,然而,这样做提出了一个重大挑战:这种图案必须在微观尺度上发生,但要跨越很远的距离。有一种替代方法可以防止使用 3D 打印等直接技术:生物有机体能够利用基本化学成分的自组织和调整的相互作用来产生复杂的结构。组织流程,以及微观粒子之间工程力的实用方法,该项目探索了一种称为“光学结合”的效应,该效应利用光在粒子簇之间诱导复杂的力。此外,研究人员正在对“声学结合”进行原理验证研究,这是一种使用声音而不是光的类似效应。这两项工作的长期目标都是利用这些效应。更好地理解一般自组织的新颖工具,该项目还包括通过综合教育和研究机会,增加中学至研究生阶段对 STEM 领域代表性不足的群体的参与。研究人员与加州大学默塞德分校的山猫夏季 STEM 学院合作,为中学生和高中生开设了一门新的实验物理课程,该课程不依赖于“罐装”物理实验,而是让学生了解科学发展的完整生命周期;实验,从设计到执行技术摘要:了解自组织引起了许多科学领域的兴趣,包括生物学、化学、物理学和工程学,胶体系统已成为研究这种现象的有用实验平台,因为存在多种技术来修改自组织。尽管如此,可以产生的力的类型是有限的:它们通常是短程的,并且只能在合成阶段进行修改,该项目正在研究一种称为光学结合的效应,它使用光。诱导长时间的多粒子相互作用此外,该项目还包括对声学结合的原理验证研究,该研究团队正在使用新颖的数值方法。以及详细研究这两种类型的力并探索这些力如何改变多粒子系统的自组织的实验方法,这为了解自组织的壮举如何在自然世界中发挥作用以及如何利用它们提供了见解。创造新的人造除了其研究目标外,该项目还包括综合推广工作,通过为学生及其教师提供研究机会和暑期项目,提高中学至研究生阶段代表性不足的群体对 STEM 的参与。该奖项反映了 NSF 的贡献。法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of acoustically bound particles
  • DOI:
    10.1103/physrevresearch.5.013051
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Nicholas St. Clair;D. Davenport;A. Kim;D. Kleckner
  • 通讯作者:
    Nicholas St. Clair;D. Davenport;A. Kim;D. Kleckner
Formation of colloidal chains and driven clusters with optical binding
通过光学结合形成胶体链和驱动簇
  • DOI:
    10.1039/d2sm00393g
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Davenport, Dominique J.;Kleckner, Dustin
  • 通讯作者:
    Kleckner, Dustin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dustin Kleckner其他文献

Dustin Kleckner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dustin Kleckner', 18)}}的其他基金

Getting to the Core of Vortex Mechanics: A Hybrid Experimental and Numerical Study of Twist, Shear, and Wall Interactions
深入涡旋力学的核心:扭转、剪切和壁相互作用的混合实验和数值研究
  • 批准号:
    2330349
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
决策过程中的自己-他人差异
  • 批准号:
    71472005
  • 批准年份:
    2014
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面子与创新工作行为:中国组织中的理论建构及实证检验
  • 批准号:
    71472123
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
叠加态无机纳米层的剥离/再配列反应模型化研究
  • 批准号:
    20471036
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Self-organization and shape change in elastic active matter
职业:弹性活性物质的自组织和形状变化
  • 批准号:
    2340632
  • 财政年份:
    2024
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
Deconstructing human body plan development with stem cells
用干细胞解构人体计划制定
  • 批准号:
    10644147
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10861462
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
Center for Indigenous Resilience, Culture, and Maternal Health Equity
土著复原力、文化和孕产妇健康公平中心
  • 批准号:
    10748847
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了