CAREER: Large-Scale Examination of Problematic Online Behaviors and Their Regulators

职业:对有问题的在线行为及其监管者的大规模检查

基本信息

项目摘要

This project will help improve the quality of conversations and information online by identifying the constraints that regulate cross-partisan animosity and disinformation across different social media platforms. Combining the strengths of political communication and socioeconomic theories with the methodological rigor of computational and experimental approaches, this research will identify: (1) which regulators, or strategies, are suitable or most effective for combating disinformation and cross-partisan animosity online; (2) how their strengths vary across behaviors and social media platforms; and (3) how these regulators interact, at times undermining or supporting each other. Scholars once thought that online social media platforms would bring in a new era of democratic discussion and debate. However, scholars and users alike are now mostly concerned about the dark side of these platforms - problems such as incivility, cross-partisan animosity, and disinformation are all commonplace online. While there have been efforts to combat these problems - such as the use of moral suasion to curb incivility and media literacy to curb misinformation - the approaches thus far lack a unified theoretical framework that allows for a systematic exploration of the solution space. This research will develop a framework connecting three of the modalities that regulate behavior online and offline: (1) Norms constrain through the sanctions or rules of a community. (2) Market constrains through price. (3) Architecture - built environment or code in online space - constrains through the structural burdens it imposes. The impact of these modalities on disinformation and cross-partisan animosity will be examined by developing a broad range of methodological approaches, spanning fields such as machine learning, network science, and causal inference. First, the project will contribute rich datasets and scalable machine learning and network science approaches for identifying cross-partisan animosity and disinformation online. Second, this project will bring together the theoretical strengths of legal and political communication scholarship and the computational strengths of computer and information sciences to combat problematic behaviors online. It will investigate the efficacy of different modalities of regulation through natural and randomized experiments and identify their interdependencies using structural equation modeling. Third, it will determine the generalizability of strategies by examining the behavior and efficacy of regulators across different platforms. Finally, most approaches that address problematic behaviors online treat individuals as the unit of analysis. However, structural regulators act upon communities. This project will overcome issues that generally undermine research at the individual level by performing comparative analyses across not just individuals but also communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过确定调节不同社交媒体平台上跨党派敌意和虚假信息的限制因素,帮助提高在线对话和信息的质量。将政治传播和社会经济理论的优势与计算和实验方法的严谨性相结合,本研究将确定:(1)哪些监管机构或策略适合或最有效地打击网上虚假信息和跨党派仇恨; (2) 他们的优势如何因行为和社交媒体平台而异; (3) 这些监管机构如何相互作用,有时相互破坏或相互支持。学者们曾经认为在线社交媒体平台将带来民主讨论和辩论的新时代。然而,学者和用户现在最关心的是这些平台的阴暗面——不文明、跨党派仇恨和虚假信息等问题在网上司空见惯。尽管人们一直在努力解决这些问题,例如利用道德劝说来遏制不文明行为,利用媒体素养来遏制错误信息,但迄今为止,这些方法缺乏一个统一的理论框架,无法系统地探索解决方案空间。这项研究将开发一个框架,连接三种规范线上和线下行为的模式:(1)通过社区的制裁或规则进行规范约束。 (2)通过价格约束市场。 (3) 架构——在线空间中的构建环境或代码——通过其施加的结构负担进行约束。这些模式对虚假信息和跨党派敌意的影响将通过开发广泛的方法论来检验,涵盖机器学习、网络科学和因果推理等领域。首先,该项目将提供丰富的数据集以及可扩展的机器学习和网络科学方法,用于识别在线跨党派敌意和虚假信息。其次,该项目将汇集法律和政治传播学术的理论优势以及计算机和信息科学的计算优势,以打击在线问题行为。它将通过自然和随机实验研究不同监管方式的有效性,并使用结构方程模型确定它们的相互依赖性。第三,它将通过检查不同平台上监管机构的行为和效率来确定策略的普遍性。最后,大多数解决在线问题行为的方法都将个人视为分析单位。然而,结构性监管者对社区起作用。该项目将通过对个人和社区进行比较分析来克服通常破坏个人层面研究的问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wisdom of Two Crowds: Misinformation Moderation on Reddit and How to Improve this Process---A Case Study of COVID-19
两群人的智慧:Reddit 上的错误信息审核以及如何改进这一流程——以 COVID-19 为例
The Stability of Cable and Broadcast News Intermedia Agenda Setting Across the COVID-19 Issue Attention Cycle
COVID-19 问题关注周期内有线和广播新闻媒介议程设置的稳定性
  • DOI:
    10.1080/10584609.2023.2222382
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Budak, Ceren;Jomini Stroud, Natalie;Muddiman, Ashley;Murray, Caroline C.;Kim, Yujin
  • 通讯作者:
    Kim, Yujin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ceren Budak其他文献

Indexing theory during an emerging health crisis: how U.S. TV news indexed elite perspectives and amplified COVID-19 misinformation
新出现的健康危机期间的索引理论:美国电视新闻如何索引精英观点并放大 COVID-19 错误信息
Data Acquisition, Sampling, and Data Preparation Considerations for Quantitative Social Science Research Using Social Media Data
使用社交媒体数据进行定量社会科学研究的数据采集、采样和数据准备注意事项
  • DOI:
    10.31234/osf.io/k6vyj
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zeina Mneimneh;Josh Pasek;Lisa Singh;R. Best;L. Bode;E. Bruch;Ceren Budak;P. Davis‐Kean;K. Donato;N. Ellison;Gelman A;E. Groshen;Libby Hemphill;Will Hobbs;Jensen Jb;G. Karypis;J. Ladd;A. O'hara;T. Raghunathan;P. Resnik;Rebecca Ryan;S. Soroka;M. Traugott;Brady T. West;Stefan Wojcik
  • 通讯作者:
    Stefan Wojcik
GeoWatch : Online detection of Geo-Correlated Information Trends In Social Networks
GeoWatch:社交网络中地理相关信息趋势的在线检测
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ceren Budak;T. Georgiou;D. Agrawal;A. E. Abbadi
  • 通讯作者:
    A. E. Abbadi
Intermedia Agenda Setting during the 2016 and 2020 U.S. Presidential Elections
2016年和2020年美国总统选举期间的跨媒体议程设置
USApp – American Politics and Policy Blog: Real-time analysis shows that the first debate shifted attitudes among Twitter users towards Biden and the second solidified them
USapp – 美国政治与政策博客:实时分析显示,第一场辩论改变了 Twitter 用户对拜登的态度,第二场辩论则巩固了这种态度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ceren Budak;Kornraphop Kawintiranon;L. Singh;S. Soroka
  • 通讯作者:
    S. Soroka

Ceren Budak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ceren Budak', 18)}}的其他基金

GCR: Collaborative Research: The Future of Quantitative Research in Social Science
GCR:协作研究:社会科学定量研究的未来
  • 批准号:
    1934494
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CHS: Small: Systematic Comparative and Historical Analysis Framework for Social Movements
CHS:小型:社会运动的系统比较和历史分析框架
  • 批准号:
    1815875
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向大规模盲源分离的高维度大尺寸张量分解方法研究
  • 批准号:
    62071082
  • 批准年份:
    2020
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向科学大装置超大规模数据流的定制计算研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
    联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
  • 批准号:
    31771484
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于热点导航的大图数据迭代计算过程可视化关键技术研究
  • 批准号:
    61602103
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了