CAREER: Cognitively-Informed Memory Models for Language-Capable Robots

职业:具有语言能力的机器人的认知信息记忆模型

基本信息

  • 批准号:
    2044865
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Robots that can communicate with people through spoken language stand to advance the future of human work and to assist the most vulnerable members of society, including children and older adults, people with disabilities, autism, or mental illness, and people experiencing isolation, bullying, or trauma. One of the key tasks that robots will need to do when talking with everyday people is referring expression generation, which is the process of creating descriptions like "the office at the end of the hallway." When robots generate such descriptions, they need to do so in a way that is accurate (the description shouldn't be wrong), natural (the description shouldn't sound awkward), understandable (the listener should be able to interpret the description quickly and effortlessly), and efficient (the robot should be able to generate the description without having to pause and think for too long). To understand how robots might generate descriptions in a way that satisfies these properties, we can start by trying to understand how people do so. One reason we are good at generating referring expressions may be because of our working, or short term, memory, which we use to keep a small amount of timely and important information available in a way that we can quickly and effortlessly access. The key idea of this project is to give robots the same type of working memory capabilities, and the same ways of thinking about what might be in peoples' working memories, so they will be able to use that timely and important information to do a better job at generating referring expressions. By taking this cognitively inspired approach, this work will advance the state of the art of multiple fields, including AI, robotics, and psychology. In addition, the educational aspect of this project aims to develop materials that will help train the next generation of students working at the intersection of these fields. To ensure the broadest possible impact, these efforts will be integrated with the PI's department's activities relating to Broadening Participation in Computing so that they reach currently underrepresented groups. From a technical perspective, the key goal of this research is to show how models of working memory that appropriately cache task-relevant beliefs about goal-relevant objects will enable robots to better perform referring expression generation. To this end, the work will assess two key hypotheses: that cognitively inspired models of working memory will enable robots to generate referring expressions in a way that is more accurate, natural, computationally efficient to generate, and cognitively efficient for the listener to process; and that goal relevance can be leveraged to ensure that the most task-relevant information is retained within those models. By addressing these hypotheses, the research will develop: (1) the first algorithms for referring expression generation in robot cognitive architectures that are informed by current psychological theories of human working memory; (2) a fundamental new understanding of how robots can intelligently manage and allocate resources within artificial working memory models, (3) an understanding of which memory models will produce optimal performance from both robotics and cognitive modeling perspectives; (4) fundamental new understanding of how the goal relevance of entities and their properties can be automatically assessed within integrated cognitive architectures; (5) understanding of how goal relevance can be used to allocate cognitive resources within robotic models of working memory; (6) understanding of which goal-driven resource allocation strategies will produce optimal performance from both robotics and cognitive modeling perspectives; and (7) freely-available datasets of human-robot dialogues, and a freely-available experimental framework to allow other researchers to collect additional such dialogues, both of which will be permanently archived via the Open Science Framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以通过口语与人们交流的机器人可以促进人类工作的未来,并协助社会上最脆弱的成员,包括儿童和老年人,残疾人,自闭症或精神疾病,以及经历孤立,欺凌或创伤的人们。机器人与日常人们交谈时需要做的关键任务之一是指代表达生成,这是创建诸如“走廊尽头的办公室”之类的描述的过程。当机器人生成这样的描述时,他们需要以准确的方式(描述不应该是错误的),自然(描述不应该听起来很尴尬),可以理解的(听众应该能够快速又毫不费力地解释描述),并且有效地解释了描述(机器人应该能够生成描述而无需停止并思考太久)。为了了解机器人如何以满足这些属性的方式生成描述,我们可以首先尝试了解人们如何做到这一点。我们善于生成参考表达式的原因之一可能是由于我们的工作或短期内存,我们用来以我们可以快速而轻松地访问的方式保留少量及时和重要的信息。该项目的关键思想是为机器人提供相同类型的工作记忆功能,并以相同的思考方式来思考人们的工作记忆中可能是什么,以便他们能够使用及时和重要的信息来更好地生成推荐表达式。通过采用这种认知灵感的方法,这项工作将推动包括AI,机器人技术和心理学在内的多个领域的艺术状态。此外,该项目的教育方面旨在开发材料,以帮助培训在这些领域交叉点工作的下一代学生。为了确保最广泛的影响,这些努力将与PI部门的活动有关,该活动与扩大计算的活动有关,以使它们达到目前代表性不足的群体。从技术角度来看,这项研究的关键目标是展示如何适当缓存与任务相关的目标对象的工作记忆模型如何使机器人能够更好地执行参考表达生成。为此,工作将评估两个关键的假设:认知灵感的工作记忆模型将使机器人能够以更准确,自然,在计算上有效产生的方式生成转介表达式,并有效地为听众进行处理;并且可以利用该目标相关性,以确保将最重要的信息保留在这些模型中。通过解决这些假设,研究将发展:(1)引用在机器人认知体系结构中产生表达产生的算法,这些算法由当前人类工作记忆的当前心理学理论所告知; (2)对机器人如何在人工工作记忆模型中智能管理和分配资源的基本新理解,(3)对哪些内存模型将从机器人和认知建模的角度产生最佳性能的理解; (4)对实体及其属性的目标相关性如何自动评估的基本新理解; (5)了解如何使用目标相关性来分配工作记忆的机器人模型中的认知资源; (6)了解哪种目标驱动的资源分配策略将从机器人和认知建模的角度产生最佳性能; (7)人类机器人对话的可自由可用数据集,以及一个可以自由获得的实验框架,允许其他研究人员收集其他此类对话,这两个对话都将通过开放的科学框架永久存档。本奖奖反映了NSF的法定任务,并通过使用基金会的智力效果进行评估,并被评估值得评估。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Eye of the Robot Beholder: Ethical Risks of Representation, Recognition, and Reasoning over Identity Characteristics in Human-Robot Interaction
机器人旁观者之眼:人机交互中身份特征的表示、识别和推理的道德风险
  • DOI:
    10.1145/3568294.3580031
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Williams, Tom
  • 通讯作者:
    Williams, Tom
Rube-Goldberg Machines, Transparent Technology, and the Morally Competent Robot
鲁布-戈德堡机器、透明技术和有道德能力的机器人
The Importance of Memory for Language-Capable Robots
记忆对于具有语言能力的机器人的重要性
  • DOI:
    10.1145/3611687
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Silva, Rafael Sousa;Han, Zhao;Williams, Tom
  • 通讯作者:
    Williams, Tom
Enabling Human-like Language-Capable Robots Through Working Memory Modeling
通过工作记忆建模实现具有类人语言能力的机器人
Community Futures With Morally Capable Robotic Technology
具有道德能力的机器人技术的社区未来
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Williams其他文献

BronchStart Study Extended Data
BronchStart 研究扩展数据
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Williams
  • 通讯作者:
    Thomas Williams
UVAE: Integration of Heterogeneous Unpaired Data with Imbalanced Classes
UVAE:异构不成对数据与不平衡类的集成
  • DOI:
    10.1101/2023.12.18.572157
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mike Phuycharoen;Verena Kaestele;Thomas Williams;Lijing Lin;Tracy Hussell;John Grainger;Magnus Rattray
  • 通讯作者:
    Magnus Rattray
Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial
  • DOI:
    10.1016/j.ynirp.2024.100216
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Nevin John;Alberto Calvi;Alessia Bianchi;Floriana De Angelis;Anisha Doshi;Sarah Wright;Madiha Shatila;Marios C. Yiannakas;Fatima Chowdhury;Jon Stutters;Antonio Ricciardi;Ferran Prados;David MacManus;Francesco Grussu;Anita Karsa;Becky Samson;Marco Battiston;Claudia A.M. Gandini Wheeler-Kingshott;Karin Shmueli
  • 通讯作者:
    Karin Shmueli
FRI-453 - Bariatric surgery in alcohol dependence and alcohol-related liver disease
  • DOI:
    10.1016/s0168-8278(23)00700-6
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Williams;Andrew Palmer;Gerald Holtmann;Jason Connor;Paul Clark
  • 通讯作者:
    Paul Clark
3122 – DYNAMIC REGULATION OF HIERARCHICAL HETEROGENEITY IN ACUTE MYELOID LEUKAEMIA, SERVES AS A TUMOUR IMMUNOEVASION MECHANISM.
  • DOI:
    10.1016/j.exphem.2020.09.131
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constandina Pospori;William Grey;Shayin Gibson;Sara Gonzalez-Anton;Thomas Williams;Christiana Georgiou;Flora Birch;Myriam Haltalli;Maria-Nefeli Skoufou-Papoutsaki;Georgia Stevens;Katherine Sloan;Reema Khorshed;Francesca Hearn-Yeates;Jack Hopkins;Chrysi Christodoulidou;Dimitrios Stampoulis;Hans Stauss;Ronjon Chakraverty;Dominique Bonnet;Cristina Lo Celso
  • 通讯作者:
    Cristina Lo Celso

Thomas Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Williams', 18)}}的其他基金

Tracing the origin and diversification of a morphological trait through transcriptional regulators and their target genes
通过转录调节因子及其靶基因追踪形态性状的起源和多样化
  • 批准号:
    2211833
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Role-Based Norm Violation Response in Human-Robot Teams
CHS:小型:协作研究:人机团队中基于角色的规范违规响应
  • 批准号:
    1909847
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MICA: Hydroxyurea - Pragmatic Reduction In Mortality and Economic burden (H-PRIME)
MICA:羟基脲 - 务实降低死亡率和经济负担 (H-PRIME)
  • 批准号:
    MR/S004904/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
S&AS: FND: Context-Aware Ethical Autonomy for Language Capable Robots
S
  • 批准号:
    1849348
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: APERTURE: Augmented Reality based Perception-Sensitive Robotic Gesture
CHS:小型:协作研究:APERTURE:基于增强现实的感知敏感机器人手势
  • 批准号:
    1909864
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRI: II-New: Infrastructure for Robust Interactive Underground Robots
CRI:II-新:强大的交互式地下机器人基础设施
  • 批准号:
    1823245
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the gene regulatory network alterations responsible for the repeated evolution of a Hox-regulated trait
合作研究:解决导致 Hox 调控性状重复进化的基因调控网络改变
  • 批准号:
    1555906
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: The structure, function, and evolution of a regulatory network controlling sexually dimorphic fruit fly development
合作研究:控制性二态性果蝇发育的调控网络的结构、功能和进化
  • 批准号:
    1146373
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

概念知识影响视听情绪知觉的认知神经机制
  • 批准号:
    32300863
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病早期认知功能下降病情演化临界预警模型研究
  • 批准号:
    82371484
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
社交媒体依赖行为习得与干预的认知神经计算机制研究
  • 批准号:
    32300905
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
认知诊断框架下稳健的Q矩阵修正方法研究
  • 批准号:
    32300942
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
  • 批准号:
    32371037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Cognitively Augmented Behavioral Activation for Veterans with Comorbid TBI/PTSD
患有共病 TBI/PTSD 的退伍军人的认知增强行为激活
  • 批准号:
    9889810
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
Cognitively Augmented Behavioral Activation for Veterans with Comorbid TBI/PTSD
患有共病 TBI/PTSD 的退伍军人的认知增强行为激活
  • 批准号:
    10770371
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
Cognitively Augmented Behavioral Activation for Veterans with Comorbid TBI/PTSD
患有共病 TBI/PTSD 的退伍军人的认知增强行为激活
  • 批准号:
    10610348
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
Cognitively Augmented Behavioral Activation for Veterans with Comorbid TBI/PTSD
患有共病 TBI/PTSD 的退伍军人的认知增强行为激活
  • 批准号:
    10517278
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
Cognitively Augmented Behavioral Activation for Veterans with Comorbid TBI/PTSD
患有共病 TBI/PTSD 的退伍军人的认知增强行为激活
  • 批准号:
    9260708
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了