Thermal constraints on the role of hydrated oceanic mantle lithosphere in the genesis of intermediate-depth seismicity

水合大洋地幔岩石圈在中深度地震活动成因中作用的热约束

基本信息

  • 批准号:
    2021027
  • 负责人:
  • 金额:
    $ 29.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

While most of the Earth’s earthquakes happen near the surface, a significant subset occurs at greater depths. These earthquakes are generated within tectonic plates that are sinking into the Earth’s mantle through a process called subduction. Subduction plays an important role in the evolution of our planet by cycling volatile materials like water and carbon back into the planet’s interior. Some of these volatiles are released from the slab in time to be returned to the surface through volcanoes, but some fraction are subducted to much greater depths. What we don’t know is what those relative fractions are. Part of the difficulty is in tracing where volatiles are released. The investigators hypothesize that earthquakes that happen in downgoing plates at “intermediate depths” (or between about 70 and 300 km below the Earth’s surface) are caused by the release of water from deep within the subducting plates. Water brought down in the crust of the downgoing plate is probably released at shallower depths, but the water the team is studying, located below the crust of the downgoing plate (known as the “mantle lithosphere”) has the potential to be subducted to much greater depths given the correct conditions. The investigators have found a geological location where they can test whether or not water in the mantle lithosphere is being released during intermediate depth earthquakes. In this project, they will develop thermal models for the complex subduction zones that exist in the selected test areas in order to examine whether the conditions are right for the release of water at the locations where earthquakes are seen. If so, then it will show that these volatiles do not get subducted to greater depths in the Earth, but rather are likely to eventually be returned to the Earth’s surface. This is important for our understanding of the chemical evolution of our planet and its ability to maintain a volatile-rich atmosphere over geologic time. The thermal modeling approach the team develops will be made public to the scientific community. Other scientists can use it to study the thermal properties of complex slabs elsewhere to further our understanding on a broader scale. This project will support an early-career scientist, and will also engage undergraduate summer interns in research visualization efforts. The occurrence of intermediate-depth seismicity in subduction zones is commonly attributed to the metamorphic dehydration of mineral phases within the downgoing oceanic plate. Water is introduced to the plate upon its formation at the ridge and by outer-rise faulting just before subduction, yet the amount of water introduced and its role in intermediate-depth seismicity remains uncertain. Two flat segments in the South American subduction zone are characterized by strong variations in slab geometry and convergence both in space and in time. The investigators hypothesize that these variations lead to temperature variations at depth that control the variable seismicity at intermediate depths. They will test this hypothesis by predicting the thermal structure of the subducted lithosphere through high-resolution 3D and time-dependent finite element models from which they can predict the metamorphic conditions and where dehydration takes place. The full thermal models and open-source modeling capability will be made available in multiple forms so that they can be used by a wide range of researchers ranging from graduate students in petrology and geochemistry to specialists in geodynamical modeling. This project will therefore contribute to software infrastructure and leverage significant investments by the National Science Foundation in subduction zone research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然地球上的大多数地震发生在地表附近,但也有相当一部分地震发生在地壳深处,这些地震通过俯冲作用沉入地幔,在地球的演化过程中发挥着重要作用。通过将水和碳等挥发性物质循环回地球内部,其中一些挥发物及时从板块中释放出来,通过火山返回到地表,但有些部分会潜入更深的地方。我们不知道这些相对分数是什么,部分困难在于追踪挥发物的释放位置。研究人员追踪发生在“中等深度”(或地球以下约 70 至 300 公里)的下降板块中的地震。表面)是由俯冲板块深处的水释放引起的,下降到下降板块地壳中的水可能是在较浅的深度释放的,但该团队正在研究的水位于下降板块地壳下方。在适当的条件下,板块(称为“地幔岩石圈”)有可能俯冲到更大的深度,研究人员已经找到了一个地质位置,可以测试地幔岩石圈中的水是否在中间深度被释放。在这个项目中,他们将为选定的测试区域中存在的复杂俯冲带开发热模型,以检查地震发生地点是否适合释放水。将表明这些挥发物不会潜入地球更深处,而是可能最终返回地球表面,这对于我们了解地球的化学演化及其在地质上维持富含挥发物的大气的能力非常重要。该团队开发的热建模方法将向科学界公开,其他科学家可以使用它来研究其他地方的复杂板的热特性,以进一步加深我们对早期职业科学家的了解。 ,并且还将参与本科生暑期俯冲带中深度地震活动的发生通常归因于下降海洋板块内矿物相的变质脱水,水在板块形成时被引入到洋脊和外隆断层中。就在俯冲之前,但引入的水量及其在中深度地震活动中的作用仍然不确定。南美俯冲带的两个平坦部分的特点是板片几何形状和空间和收敛性的强烈变化。研究人员寻求这些变化导致深度的温度变化,从而控制中间深度的可变地震活动,他们将通过高分辨率 3D 和时间相关的有限元模型预测俯冲岩石圈的热结构来检验这一假设。他们可以预测变质条件以及脱水发生的位置。完整的热模型和开源建模功能将以多种形式提供,以便广泛的研究人员(包括岩石学研究生和研究生)使用。因此,该项目将为软件基础设施做出贡献,并利用美国国家科学基金会在俯冲带研究方面的重大投资。该奖项是美国国家科学基金会的法定使命,并通过利用基金会的智力优势和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter van Keken其他文献

Dynamical Geochemistry: Mantle dynamics and its role in the formation of geochemical heterogeneity
动力地球化学:地幔动力学及其在地球化学不均匀性形成中的作用
  • DOI:
  • 发表时间:
    2023-09-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter van Keken;Catherine Chauvel;Chris Ballentine
  • 通讯作者:
    Chris Ballentine

Peter van Keken的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter van Keken', 18)}}的其他基金

Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamics
合作研究:通过整合岩石学和地球动力学来约束俯冲界面的热条件
  • 批准号:
    1850634
  • 财政年份:
    2019
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
CSEDI: Geochemical Evolution of the Earth's Mantle Constrained by Observations and Dynamical Modeling
CSEDI:观测和动力学模型约束下的地幔地球化学演化
  • 批准号:
    1664642
  • 财政年份:
    2017
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced modeling for understanding fluid and magma migration in subduction zones
合作研究:用于了解俯冲带流体和岩浆迁移的高级建模
  • 批准号:
    1356132
  • 财政年份:
    2014
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Collaborative Research: the role of fluids in intermediate-depth seismicity and wedge anisotropy: Case studies for Cascadia and Alaska, with a comparison to Japan
合作研究:流体在中深度地震活动和楔形各向异性中的作用:卡斯卡迪亚和阿拉斯加的案例研究,并与日本进行比较
  • 批准号:
    1249353
  • 财政年份:
    2013
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Consequences of plate tectonics in a compressible mantle
可压缩地幔中板块构造的后果
  • 批准号:
    1246700
  • 财政年份:
    2013
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Joint seismic, geodynamic, and mineral physics investigation of mantle plumes
CSEDI 合作研究:地幔柱的地震、地球动力学和矿物物理联合调查
  • 批准号:
    0855487
  • 财政年份:
    2009
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Continuing Grant
MARGINS: Collaborative Research: Synthesis and Integration of Magmagenetic Controls for Subduction Factory Focus Sites
边缘:合作研究:俯冲工厂焦点地点岩浆成因控制的综合和整合
  • 批准号:
    0840448
  • 财政年份:
    2009
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced models of magma migration at convergent MARGINS
合作研究:汇聚边缘岩浆运移的高级模型
  • 批准号:
    0841075
  • 财政年份:
    2009
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: 3D modeling of subduction in the Pacific
合作研究:太平洋俯冲的 3D 建模
  • 批准号:
    0646757
  • 财政年份:
    2007
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant
Acquisition of a Linux Cluster for Seismological and Geodynamical Modeling
获取用于地震和地球动力学建模的 Linux 集群
  • 批准号:
    0651056
  • 财政年份:
    2007
  • 资助金额:
    $ 29.81万
  • 项目类别:
    Standard Grant

相似国自然基金

图中有限制条件的圈存在性问题研究
  • 批准号:
    12301455
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不受昼夜成像条件和模态限制的域自适应行人重识别
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
升温和铁限制条件下三角褐指藻胞内铁分配策略的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于加权l_p非凸优化和高阶限制等距条件的稀疏信号恢复
  • 批准号:
    12171496
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脱氮假单胞菌氧限制条件下NADPH对维生素B12生物合成的应激代谢调控机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Anatomical, neural, and computational constraints on sensory cross-modal plasticity following early blindness
早期失明后感觉跨模态可塑性的解剖学、神经学和计算限制
  • 批准号:
    10570400
  • 财政年份:
    2023
  • 资助金额:
    $ 29.81万
  • 项目类别:
Identifying Intermolecular Constraints on Influenza Virus Evolution
确定流感病毒进化的分子间限制
  • 批准号:
    10395814
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
Biophysical constraints of influenza neuraminidase evolution
流感神经氨酸酶进化的生物物理限制
  • 批准号:
    10522548
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
Effects of The Rate of Environmental Change on Mutational Patterns and Evolutionary Constraints
环境变化率对突变模式和进化限制的影响
  • 批准号:
    10664044
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
Biophysical constraints of influenza neuraminidase evolution
流感神经氨酸酶进化的生物物理限制
  • 批准号:
    10654846
  • 财政年份:
    2022
  • 资助金额:
    $ 29.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了