Pore-scale machine-learning modeling of flow and transport properties of carbonate rocks
碳酸盐岩流动和输运特性的孔隙尺度机器学习建模
基本信息
- 批准号:2041648
- 负责人:
- 金额:$ 28.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Carbonate rocks constitute one of the most common type of groundwater and fossil fuel reservoirs in the USA. Design of optimum strategies for groundwater and fossil fuel resources development is generally done through the application of computer simulation programs where users need to input a set of flow and transport properties of the reservoir rock. The traditional approach to estimate flow and transport properties of reservoir rocks consists of using deterministic model equations. This approach frequently results in large disagreement between measured and simulated multiphase flow and reactive transport processes in carbonate reservoirs. The complex heterogeneous pore microstructure of carbonate rocks is reflected by stochastic (random) relationships between fundamental petrophysical properties (e.g., porosity) and flow and transport properties (e.g., permeability and tortuosity) of carbonate rocks that are practically impossible to capture by deterministic model equations. The goals of this research are (1) to develop a predictive understanding of the stochastic relationship between the pore microstructure and flow and transport properties of carbonate rocks, and (2) to establish machine learning models that capture the stochastic relationship between fundamental petrophysical properties and flow and transport properties of carbonate rocks. This research will advance national welfare and prosperity by enabling the design of environmentally responsible and optimum strategies to develop groundwater and fossil fuel resources from carbonate reservoirs, and it will contribute to the education of students on the use of artificial intelligence (e.g., machine learning) technologies to develop groundwater and fossil fuel resources. The goals of this research will be achieved by using a novel approach that overcomes limitations regarding the relatively small number of pore microstructures and associated flow and transport properties of carbonate rocks that can be experimentally determined by routine and special analyses. This novel approach consists of the construction of thousands of 3D pore microstructures of stochastic pore connectivity honoring pore size distribution curves obtained from nuclear magnetic resonance (NMR) measurements and pore geometries obtained from 2D scanning electron microscopy (SEM) imaging. Direct pore-scale simulations of flow and transport properties for thousands of 3D pore microstructures of the same pore size distribution and dominant pore geometry, but different pore connectivity, as it happens in real carbonate rocks, will make possible achieving the goals of this research by applying statistical/stochastic principles and machine learning technologies. The focus will be on carbonate rocks collected from the Mississippian Lime Play and Arbuckle Group in Oklahoma and Kansas. This project is jointly funded by the Hydrologic Sciences Program (HS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳酸盐岩是美国最常见的地下水和化石燃料储层之一。通常通过应用计算机模拟程序来完成地下水和化石燃料资源开发的最佳策略,用户需要输入储层岩石的一组流量和运输属性。估计水库岩石的流量和运输特性的传统方法包括使用确定性模型方程。这种方法经常导致碳酸盐储层中测量和模拟的多相和反应性传输过程之间的大分分歧。碳酸盐岩石的复杂异质孔微结构反映出基本岩石物理特性(例如孔隙率)与流动性能(例如渗透率和折磨)(例如,渗透率和折磨)之间的随机(随机)关系,碳酸盐岩石几乎是不可能通过确定性模型方程捕获的碳酸盐岩石。这项研究的目标是(1)对孔岩石岩石岩石的随机关系进行预测理解,以及(2)建立机器学习模型,以捕获捕获基本岩石物理和之间的随机关系碳酸盐岩的流量和运输特性。这项研究将通过启用对环境负责和最佳策略的设计来发展国家福利和繁荣,从而开发碳酸盐储层的地下水和化石燃料资源,并将为学生在使用人工智能的使用方面的教育(例如,机器学习)开发地下水和化石燃料资源的技术。这项研究的目标将通过使用一种新型方法来实现,该方法克服了相对较少数量的孔微结构以及相关的流量和运输特性,可以通过常规和特殊分析来实验确定。这种新颖的方法包括构建数千个3D孔微结构的随机孔连接性,以纪念从核磁共振(NMR)测量值获得的孔径分布曲线和从2D扫描电子显微镜(SEM)成像中获得的孔的几何形状。对数千个相同孔径分布和主要孔几何形状的3D孔微结构的流量和运输特性的直接孔尺度模拟,但是在实际碳酸盐岩石中发生的那样,不同的孔连接将使实现这一研究的目标,从而实现这项研究的目标。应用统计/随机原理和机器学习技术。重点将放在从密西西比石灰游戏和俄克拉荷马州和堪萨斯州的Arbuckle集团中收集的碳酸盐岩石上。该项目由水文科学计划(HS)共同资助和启发竞争性研究的既定计划(EPSCOR)。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛影响的评估标准,认为值得支持的支持。 。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical and neural network analysis of the relationship between the stochastic nature of pore connectivity and flow properties of heterogeneous rocks
- DOI:10.1016/j.jngse.2022.104719
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:O. Ishola;Aaron Alexander;J. Vilcáez
- 通讯作者:O. Ishola;Aaron Alexander;J. Vilcáez
Machine learning modeling of permeability in 3D heterogeneous porous media using a novel stochastic pore-scale simulation approach
- DOI:10.1016/j.fuel.2022.124044
- 发表时间:2022
- 期刊:
- 影响因子:7.4
- 作者:O. Ishola;J. Vilcáez
- 通讯作者:O. Ishola;J. Vilcáez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javier Vilcaez其他文献
Enhanced hydrogen production from biomass via the sulfur redox cycle
通过硫氧化还原循环提高生物质的氢气产量
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:7.2
- 作者:
Putri Setiani;Javier Vilcaez;Noriaki Watanabe;Atsushi Kishita, - 通讯作者:
Atsushi Kishita,
Javier Vilcaez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javier Vilcaez', 18)}}的其他基金
REMOVAL OF METALS FROM PETROLEUM PRODUCED WATER BY DOLOMITE
用白云石去除石油采出水中的金属
- 批准号:
2200036 - 财政年份:2022
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant
相似国自然基金
复杂结构化环境下大规模多移动机器人的死锁及协同路径规划问题研究
- 批准号:62373139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于机器学习的超大规模晶体管级电路仿真方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
密集环境下大规模移动机器人路径分层解耦规划及鲁棒调度研究
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向非一致性网络中大规模分布式机器学习的全规约算法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向大规模基带信号处理的分布式机器学习方法
- 批准号:62231019
- 批准年份:2022
- 资助金额:292 万元
- 项目类别:重点项目
相似海外基金
KUber: Knowledge Delivery System For Machine Learning At Scale
KUber:大规模机器学习的知识传递系统
- 批准号:
EP/X035085/1 - 财政年份:2024
- 资助金额:
$ 28.24万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 28.24万 - 项目类别:
Standard Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
- 批准号:
23H01395 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
- 批准号:
22KJ0878 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows