I-Corps: Accelerating discovery research into neural-stem-cell-driven tissue regrowth through modeling and simulation

I-Corps:通过建模和模拟加速神经干细胞驱动的组织再生的发现研究

基本信息

  • 批准号:
    2040036
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is to define the requirements of modeling and simulation platforms for drug development and/or intervention strategies used in tissue repair. These strategies may be more predictive and efficient than currently available through application of experimental approaches. Ultimately, the goal for this tool is to make possible regeneration of neural tissue lost to traumatic brain injury, spinal cord injury, or stroke. Reaching this goal may transform the lives of millions of patients and their families while also substantially reducing the financial burdens to society. The translation will offer the platform as a service tailored to the needs of scientists in preclinical (discovery) research departments of pharmaceutical and biotech companies. By providing domain expertise in the modeling of stem-cell-driven tissue regeneration, clients will be enabled to narrow down the range of potentially effective compounds or intervention strategies to those treatments with the highest probability to succeed. This strategy could accelerate the discovery process, while reducing the costs and time involved in research and development.This I-Corps project is based on advancing the development of mathematical and computational models for a drug discovery platform aimed at neural tissue repair. Informed by comprehensive cell-biological data sets, these models simulate the dynamics of stem cell-driven tissue growth during the normal development of the brain and spinal cord. In addition, the models simulate the regenerative response of the central nervous system after traumatic brain injury, spinal cord injury, and stroke. In recent years, promising therapeutic strategies have been developed to promote tissue regrowth, including activation of adult neural stem cells intrinsic to the patient’s central nervous system, and the transplantation of extrinsic neural stem cells to the site of cell loss. The selection and design of tests for development of such intervention strategies is currently based on “trial and error.” However, due to the complexity of biological factors and processes involved in successful structural regeneration and functional recovery, this approach consumes considerable resources and curtails progress in the discovery of effective treatment strategies. This process may be streamlined by employing modeling and simulations. Such a strategy may help scientists to select the most meaningful experiments, thereby reducing time and costs associated with lab work, while at the same time raising the quality of the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在组织修复中使用的药物NT和/或策略的模型和/或策略的模拟和/或仿真的更广泛的影响/商业化。受伤,达到这一目标,可能会改变数百万患者及其家人的患者的生活,同时减少了对社会的财务负担。 (发现)药物和生物技术公司的ETS。研究和开发中涉及的成本和时间基于用于神经组织修复的药物发现平台的数学和模型的开发。大脑和脊髓的正常发育。目前,患者的中央神经系统设计用于开发搜索干预策略的测试是基于“反复试验”。这样的策略可以帮助科学家选择有意义的实验。该奖项反映了NSF的反应,并使用基金会的知识和更广泛的影响标准通过评估值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunther Zupanc其他文献

Gunther Zupanc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunther Zupanc', 18)}}的其他基金

Collaborative Research: Glial regulation of extracellular potassium as an underlying developmental mechanism for the male-female difference in pacemaker neuron firing frequency
合作研究:细胞外钾的神经胶质调节作为起搏器神经元放电频率男女差异的潜在发育机制
  • 批准号:
    1946910
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
A Three-dimensional Model of Spinal Cord Growth and Repair in a Regeneration-competent Organism
具有再生能力的生物体中脊髓生长和修复的三维模型
  • 批准号:
    1538505
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
  • 批准号:
    52308532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
  • 批准号:
    82372435
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
  • 批准号:
    82373112
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
  • 批准号:
    2339678
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
  • 批准号:
    2338909
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了