I-Corps: Fiber to Chip Photonic Packaging with Low Loss

I-Corps:低损耗光纤到芯片光子封装

基本信息

  • 批准号:
    2039976
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development and translation of a photonic integrated circuit packaging technology that will help in the advancement and scalability of integrated photonics. Silicon photonic devices are poised to enter high volume markets such as data communications, telecommunications, and laser-based radar. The integrated photonics market is predicted to grow from $600M in 2017 to $1,600M by 2022 and to $4,000M in optical transceivers in the data communications market by 2025. However, up to 80% of the cost of a silicon photonic device is in the packaging. The main cost driver for optical packaging is permanently attaching fiber to the photonic chip with high optical efficiency. The proposed technology substantially decreases the footprint of a photonic device and increases the performance of a photonic device by four times the current standard. Currently, 80% of the total cost of a photonic device comes from packaging and testing, not from fabrication. Current techniques for attaching the fiber to a chip without dissipating electrical or electromagnetic energy (loss) are time consuming and/or use bulky fixtures for packaging. The proposed technology permanently attaches a fiber to a chip using laser fusion splicing, which is robust, low loss, and scalable to high volume manufacturing.This I-Corps project is based on the development of a packaging solution for integrated photonic devices. The technology provides a novel method for packaging integrated photonic devices using fusion splicing, with the lowest loss, cost, and time. The laser fusion splicing process melts a fiber to an integrated photonic chip at the glass-glass interface. The technology includes a mode converter, which improves the performance of the device and acts as an interface for splicing the fiber to the chip efficiently. Recent results show a loss of 1dB per facet after fusing a fiber to a photonic chip, which is the lowest measured loss in a completely packaged photonic device. The proposed technology may scale manufacturing of photonic chips at a lower cost, faster speed, and higher performance than existing technologies. Further, the technology enables higher temperature processing, which simplifies current packaging processes leading to additional cost reductions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是光子集成电路封装技术的开发和转化,这将有助于集成光子学的进步和可扩展性。硅光子器件有望进入数据通信、电信和激光雷达等大批量市场。预计集成光子市场将从 2017 年的 6 亿美元增长到 2022 年的 16 亿美元,到 2025 年数据通信市场中的光收发器将增长到 40 亿美元。然而,硅光子器件高达 80% 的成本是在硅光子器件中。包装。光学封装的主要成本驱动因素是以高光学效率将光纤永久连接到光子芯片。 所提出的技术大大减少了光子器件的占地面积,并将光子器件的性能提高了当前标准的四倍。目前,光子器件总成本的 80% 来自封装和测试,而不是制造。当前用于将光纤附着到芯片而不耗散电能或电磁能(损耗)的技术非常耗时并且/或使用笨重的封装固定装置。所提出的技术使用激光熔接将光纤永久连接到芯片上,该技术坚固耐用、损耗低,并且可扩展至大批量生产。该 I-Corps 项目基于集成光子器件封装解决方案的开发。该技术提供了一种使用熔接封装集成光子器件的新颖方法,具有最低的损耗、成本和时间。激光熔接工艺将光纤熔化成玻璃-玻璃界面处的集成光子芯片。该技术包括一个模式转换器,它可以提高设备的性能,并充当将光纤有效接合到芯片的接口。最近的结果显示,将光纤熔接到光子芯片后,每个面的损耗为 1dB,这是完全封装的光子器件中测得的最低损耗。所提出的技术可以比现有技术以更低的成本、更快的速度和更高的性能扩大光子芯片的制造规模。此外,该技术还可以实现更高温度的处理,从而简化了当前的封装工艺,从而进一步降低了成本。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaime Cardenas其他文献

Electrically induced adiabatic wavelength conversion in an integrated lithium niobate ring resonator
集成铌酸锂环形谐振器中的电致绝热波长转换
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaotong He;Luis Cortes;Kwadwo Opong;Yi Zhang;Meiting Song;Govind P. Agrawal;Jaime Cardenas
  • 通讯作者:
    Jaime Cardenas
Fully Integrated On-Chip Ring Resonator Spectrometer Based on Compressed Sensing
基于压缩感知的全集成片上环形谐振器光谱仪
Cascaded Adiabatic Frequency Conversion in Coupled Lithium Niobate Microring Resonators
耦合铌酸锂微环谐振器中的级联绝热变频
Theory of high-efficiency adiabatic frequency conversion in coupled microrings
耦合微环高效绝热变频理论
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Luis Cortes;Xiaotong He;Jaime Cardenas;G. P. Agrawal
  • 通讯作者:
    G. P. Agrawal

Jaime Cardenas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaime Cardenas', 18)}}的其他基金

PIC: Navigation grade chip scale gyro enabled by weak value amplification
PIC:通过弱值放大实现的导航级芯片级陀螺仪
  • 批准号:
    2330328
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
PFI-TT: Developing Fiber to Chip Fusion for Advanced Photonic Packaging
PFI-TT:开发用于先进光子封装的光纤到芯片融合
  • 批准号:
    2140871
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Exploring silicon nitride for high speed electro-optic modulation
EAGER:探索用于高速电光调制的氮化硅
  • 批准号:
    1941213
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Electrically induced optical frequency shifts of laser light using microresonators
使用微谐振器电致激光光频移
  • 批准号:
    1807735
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

纳米纤维结合MOFs构建外泌体快速富集与代谢分析的微流控芯片新方法研究
  • 批准号:
    22304127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
维生素D受体通过CHIP/Sirt6信号通路抑制肠道成纤维细胞活化的机制研究
  • 批准号:
    82300582
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肺纤维化仿生芯片模型研究WWP2-PTEN-PI3K/Akt对肺纤维化的作用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微流控芯片技术成纤维细胞介导的GALNT6促进肺腺癌侵袭转移的机制研究
  • 批准号:
    82003319
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于心脏芯片的MSCs免疫治疗心肌纤维化研究
  • 批准号:
    82001719
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New Proximity Labeling Tools for Studying 3D Chromatin Structure and Function
用于研究 3D 染色质结构和功能的新型邻近标记工具
  • 批准号:
    10607285
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Study of real-time dual-comb spectroscopy in versatile spectral region based on on-chip devices
基于片上器件的通用光谱区实时双梳光谱研究
  • 批准号:
    22KF0143
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Defining the mechanisms of B7-H3 overexpression and role in neuroblastoma metastasis and immune evasion
定义 B7-H3 过度表达的机制及其在神经母细胞瘤转移和免疫逃避中的作用
  • 批准号:
    10750399
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
IMPACT OF LOSS OF THE AUTISM RISK GENE CHD8 ON EXPRESSION, EPIGENETICS AND CELLULAR FUNCTIONING OF THE DOPAMINERGIC SYSTEM
自闭症风险基因 CHD8 缺失对多巴胺能系统表达、表观遗传学和细胞功能的影响
  • 批准号:
    10660565
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Mechanisms underlying USP1-mediated bypass of EWS-FLI1 oncogene-induced replication stress in Ewing sarcoma
USP1介导的EWS-FLI1癌基因诱导的尤文肉瘤复制应激旁路的机制
  • 批准号:
    10446807
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了