EAGER: SaTC: SAVED: Secure Audio and Video Data from Deepfake Attacks Leveraging Environmental Fingerprints
EAGER:SaTC:SAVED:利用环境指纹保护音频和视频数据免遭 Deepfake 攻击
基本信息
- 批准号:2039342
- 负责人:
- 金额:$ 25.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fast development of artificial intelligence (AI) and machine learning algorithms is escalating the technology that empowers the ability to distort reality. It has taken an exponential leap forward to deepfake attacks, which create audio and video of real people saying and doing things they never said or did. It is ever more realistic and increasingly resistant to detection. Deepfaked video, audio, or photos published on social media platforms are highly disturbing and able to mislead the public, raising further challenges in policy, technology, social, and legal aspects. Today's deepfake tools allow people to become anyone, from Elon Musk to Eminem, during a video chat. Recent deepfake video attacks on some public scenarios have raised more concerns. Disinformation may actually cause a disturbance in our society and ruin the foundation of trust. Government agencies like the U.S. Defense Advanced Research Projects Agency (DARPA) are concerned about losing the war against deepfake attacks that use the popular machine learning technique to automatically incorporate artificial components into existing video streams. The detailed technical routines and countermeasures against deepfake attacks have not been well investigated, leaving alone a potentially effective approach to tackle the emerging threats online in real-time.This project introduces a novel solution to secure audio and video data streams against deepfake attacks. Instead of engaging in the endless AI arm races that fight fire with fire, where new machine learning algorithms keep making fake audio and video more real, this project tackles the challenging problem out of the box based on a key observation. Every audio or video stream has unique environmental fingerprints, e.g. the Electrical Network Frequency (ENF) signals, embedded when it was generated. The environmental fingerprints are random signals, which are unique, unpredictable, and unrepeatable. This project will investigate three typical application scenarios: (1) an accurate detection of deepfaked AVS data uploaded on the Internet, like social media posts; (2) an instant and accurate detection of false AVS injection attacks against online, real-time applications, like teleconferencing; and (3) a lightweight but robust version that fits on the Internet of Video Things applications, like smart public safety surveillance, which requires instant decision-making at the network edge. In addition, this project will gain deeper insights into the characteristics of the environmental fingerprints taking an information theory approach. The success of this research will deliver a disruptive technology that enables the ultimate win of the battle against the deepfake attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 和机器学习算法的快速发展正在使技术不断升级,从而赋予扭曲现实的能力。深度造假攻击已经取得了指数级的飞跃,深度造假攻击会创建真实的人所说和所做的事情的音频和视频,而他们从未说过或做过的事情。它变得更加真实,并且越来越难以被发现。在社交媒体平台上发布的深度伪造视频、音频或照片非常令人不安,并且能够误导公众,给政策、技术、社会和法律方面带来进一步的挑战。如今的深度换脸工具可以让人们在视频聊天中变成任何人,从埃隆·马斯克到埃米纳姆。最近针对一些公共场景的深度伪造视频攻击引发了更多担忧。虚假信息实际上可能会引起社会骚乱并破坏信任的基础。美国国防高级研究计划局 (DARPA) 等政府机构担心在针对 Deepfake 攻击的战争中失败,这些攻击使用流行的机器学习技术自动将人工组件合并到现有视频流中。针对 Deepfake 攻击的详细技术流程和对策尚未得到充分研究,更没有找到一种潜在有效的方法来实时应对在线新兴威胁。该项目引入了一种新颖的解决方案,以保护音频和视频数据流免受 Deepfake 攻击。该项目并没有参与无休止的以牙还牙的人工智能军备竞赛,新的机器学习算法不断使虚假的音频和视频变得更加真实,而是根据关键观察结果解决了开箱即用的挑战性问题。每个音频或视频流都有独特的环境指纹,例如生成时嵌入的电网频率 (ENF) 信号。环境指纹是随机信号,具有唯一性、不可预测性、不可重复性。该项目将研究三个典型的应用场景:(1)准确检测互联网上上传的深度伪造AVS数据,例如社交媒体帖子; (2) 即时准确地检测针对在线实时应用程序(例如电话会议)的虚假 AVS 注入攻击; (3) 轻量级但强大的版本,适合视频物联网应用,例如智能公共安全监控,需要在网络边缘进行即时决策。此外,该项目将采用信息论方法更深入地了解环境指纹的特征。这项研究的成功将提供一种颠覆性技术,最终赢得对抗深度造假攻击的战斗。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairledger: a Fair Proof-of-Sequential-Work based Lightweight Distributed Ledger for IoT Networks
Fairledger:基于公平顺序工作证明的物联网网络轻量级分布式账本
- DOI:10.1109/blockchain55522.2022.00055
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Xu, Ronghua;Chen, Yu
- 通讯作者:Chen, Yu
DeFakePro: Decentralized Deepfake Attacks Detection Using ENF Authentication
- DOI:10.1109/mitp.2022.3172653
- 发表时间:2022-07
- 期刊:
- 影响因子:2.6
- 作者:Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
- 通讯作者:Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
Detecting Compromised Edge Smart Cameras using Lightweight Environmental Fingerprint Consensus
使用轻量级环境指纹共识检测受损的边缘智能相机
- DOI:10.1145/3485730.3493684
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nagothu, Deeraj;Xu, Ronghua;Chen, Yu;Blasch, Erik;Aved, Alexander
- 通讯作者:Aved, Alexander
Robustness of Electrical Network Frequency Signals as a Fingerprint for Digital Media Authentication
- DOI:10.1109/mmsp55362.2022.9949315
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Poredi, Nihal;Nagothu, Deeraj;Blasch, Erik
- 通讯作者:Blasch, Erik
Deterring Deepfake Attacks with an Electrical Network Frequency Fingerprints Approach
- DOI:10.3390/fi14050125
- 发表时间:2022-04
- 期刊:
- 影响因子:3.4
- 作者:Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
- 通讯作者:Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Chen其他文献
[Association between urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery].
尿中性粒细胞明胶酶相关脂质运载蛋白与心脏术后急性肾损伤的关系。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
X. Wan;Changchun Cao;Yu Chen;Yujiao Xiao;Wen;Xin Chen;X. Mu - 通讯作者:
X. Mu
HateRephrase: Zero- and Few-Shot Reduction of Hate Intensity in Online Posts using Large Language Models
HateRephrase:使用大型语言模型零次或少量减少在线帖子中的仇恨强度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Vibhor Agarwal;Yu Chen;N. Sastry - 通讯作者:
N. Sastry
Higher liver stiffness in patients with chronic congestive heart failure: data from NHANES with liver ultrasound transient elastography.
慢性充血性心力衰竭患者的肝脏硬度较高:来自 NHANES 肝脏超声瞬时弹性成像的数据。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Meiying Zeng;Yu Chen;Bing - 通讯作者:
Bing
Cellular function prediction and biological pathway discovery in Arabidopsis thaliana using microarray data.
使用微阵列数据预测拟南芥的细胞功能和生物途径发现。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
T. Joshi;Yu Chen;N. Alexandrov;Dong Xu - 通讯作者:
Dong Xu
Active screening diminishes antibiotic resistance to main pathogenic bacteria in the ICU
主动筛查降低 ICU 对主要病原菌的抗生素耐药性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Liu;Xin Gu;Jun Fang;Yu Chen;Xiaomei Xu;Yuchu Zhang;Zhaojun Xu - 通讯作者:
Zhaojun Xu
Yu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Chen', 18)}}的其他基金
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142783 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
CAREER: Levelling the Playing Field in STEM: Post-transfer Success for Underrepresented Racial Minority Community College Transfers
职业:在 STEM 领域创造公平的竞争环境:少数族裔社区大学转学后取得成功
- 批准号:
2145520 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE: Investigation of Mini-filament Eruptions and Their Relationship with Small Scale Magnetic Flux Ropes in Solar Wind
合作研究:SHINE:研究太阳风中的微型细丝喷发及其与小规模磁通量绳的关系
- 批准号:
2229065 - 财政年份:2022
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
EAGER: SaTC: CORE: Small: Decentralized Data Assurance by Fair Proof of Work Consensus Federated Ledgers
EAGER:SaTC:核心:小型:通过公平工作证明共识联合账本实现去中心化数据保证
- 批准号:
2141468 - 财政年份:2021
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
Standardized Testing of Adult NIRS Oximetry Sensors using a Modular Phantom and Closed-loop Controlled Saturation System
使用模块化体模和闭环控制饱和系统对成人 NIRS 血氧传感器进行标准化测试
- 批准号:
1935845 - 财政年份:2020
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
Standardized Testing of Adult NIRS Oximetry Sensors using a Modular Phantom and Closed-loop Controlled Saturation System
使用模块化体模和闭环控制饱和系统对成人 NIRS 血氧传感器进行标准化测试
- 批准号:
2019254 - 财政年份:2020
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
A new tool for rapid RNA detection in single cells
一种快速检测单细胞 RNA 的新工具
- 批准号:
BB/S018700/1 - 财政年份:2019
- 资助金额:
$ 25.7万 - 项目类别:
Research Grant
Standardized Performance Testing of Multispectral Reflectance Oximetry Imaging (MROI) in Emerging Device Platforms
新兴设备平台中多光谱反射血氧成像 (MROI) 的标准化性能测试
- 批准号:
1743660 - 财政年份:2018
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
NSF/FDA Scholar In Residence: Quantitative Characterization of Near-infrared Fluorescence Molecular Imaging Systems: 3D-printed Biomimetic Phantoms and In vivo Validation
NSF/FDA 常驻学者:近红外荧光分子成像系统的定量表征:3D 打印的仿生体模和体内验证
- 批准号:
1641077 - 财政年份:2017
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
NSF/FDA SIR: 3D-printed Biomimetic Phantoms for Near-Infrared Spectroscopy System Performance Testing
NSF/FDA SIR:用于近红外光谱系统性能测试的 3D 打印仿生模型
- 批准号:
1542063 - 财政年份:2016
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 25.7万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 25.7万 - 项目类别:
Standard Grant