EAGER-QAC-QSA: Variational Quantum Algorithms for Nonequilibrium Quantum Many-Body Systems

EAGER-QAC-QSA:非平衡量子多体系统的变分量子算法

基本信息

  • 批准号:
    2038010
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical SummaryThis award is made on an EAGER proposal invited through the Quantum Algorithm Challenge Dear Colleague Letter. It supports research and education to develop and implement algorithms to run on quantum computers that currently exist or will exist in the near future. A perfect quantum computer is expected to solve certain problems of practical interest much faster than any conventional computer, also called a classical computer. Examples include factoring large numbers into primes with Shor's algorithm and using Lloyd's algorithm to predict the time evolution of an interacting quantum system away from equilibrium. The latter could help in optimization and design of new biomaterials, drugs, and functional quantum materials. While the past few years have brought tremendous progress in efforts to build a perfect quantum computer, the current noisy intermediate-scale quantum (NISQ) technology is potentially decades away from being able to run Shor's and Lloyd's algorithms at practically relevant scales. The underlying reason is that NISQ computers possess of the order of hundreds of qubits as opposed to the millions required to fully correct for errors that arise from noisy gate operations. This severely limits the complexity of quantum algorithms compatible with NISQ hardware and exposes a critical need for further algorithmic advancement to achieve practical quantum advantage.In this project, the PIs develop algorithms tailored to NISQ quantum processing units (QPUs) that can address fundamental challenges in nonequilibrium physics. Specifically, the research team proposes new hybrid quantum-classical variational algorithms to simulate nonequilibrium dynamics and highly excited states in novel materials such as disordered quantum magnets. The algorithms will be implemented on QPUs from IBM and Rigetti and carefully benchmarked against existing state-of-the-art quantum and classical algorithms. In addition to finding opportunities for near-term quantum advantage, this project will provide new insights into fundamental questions of how systems of interacting particles relax to thermal equilibrium and how they respond to strong external fields.The educational component of this project addresses the national priorities of educating a quantum-enabled workforce and enhancing the participation and inclusion of traditionally underrepresented groups in STEM areas. Within this project, the PIs will educate and train one graduate student, one undergraduate student, and one postdoctoral scholar in applying quantum computing algorithms to challenging open scientific questions. The PIs will also design a hands-on outreach workshop on quantum computing and present it at "Go Further," a STEM career conference aimed at female middle- and high-school students. Finally, the PIs will create and maintain an online blog for the general public that highlights career options in quantum information science and informs readers about recent trends in quantum algorithms.Technical SummaryThis award is made on an EAGER proposal invited through the Quantum Algorithm Challenge Dear Colleague Letter. It supports research and education to develop and implement algorithms to run on quantum computers that currently exist or will exist in the near future. Noisy intermediate-scale quantum (NISQ) computing devices have computing capabilities that are beyond the reach of any classical supercomputer, as has recently been demonstrated by the Google team. Whether they also offer a practical quantum advantage for calculations of interest in physics, chemistry or materials science is an open question. Simulations of nonequilibrium dynamics and highly excited states in quantum many-body systems are a promising yet challenging target, since classical algorithms for such simulations suffer from the exponential complexity and highly entangled nature of generic excited states. The development of resource-efficient quantum algorithms for current NISQ hardware can unlock their potential to address important challenges in nonequilibrium many-body physics.Here, the PIs propose two novel variational quantum algorithms that are based on the variational quantum eigensolver (VQE) algorithm, which has been demonstrated on NISQ hardware. Instead of targeting ground states as in previous works, the PIs propose to use different cost functions to explore the manifold of highly excited and time-evolved quantum states. After careful benchmarking against known quantum and classical algorithms, both algorithms will be used to address fundamental open scientific questions in the fields of many-body localization, nonlinear response and nonequilibrium dynamics in strongly disordered and interacting quantum systems.The project will advance the capabilities of variational algorithms beyond exploring properties of low-energy states. Results of this research will provide insights into the properties of highly excited states in strongly disordered interacting spin chains, and address the existence of many-body localized phases and mobility emulsions, which violate the eigenstate thermalization hypothesis. The research team will also shed light on the correlation and entanglement properties of prethermal quantum states that emerge in post-quench dynamics and test the hypothesis that their temporal stability is related to a small energy variance, making them approximate eigenstates. Finally, by implementing efficient NISQ quantum algorithms for the computation of higher-order and out-of-time-ordered correlation functions, the PIs will determine whether these functions can disentangle effects of disorder and interactions on quasiparticle properties and explore the onset of quantum chaos in spin models. By addressing fundamental challenges in condensed matter physics, the research team will contribute to the open question of whether NISQ technology offers a practical quantum advantage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项是根据量子算法挑战赛《亲爱同事的信》邀请的一项 EAGER 提案而颁发的。它支持研究和教育,开发和实施在当前存在或不久的将来存在的量子计算机上运行的算法。完美的量子计算机有望比任何传统计算机(也称为经典计算机)更快地解决某些实际问题。示例包括使用 Shor 算法将大数分解为素数,以及使用 Lloyd 算法预测相互作用的量子系统远离平衡的时间演化。后者可以帮助优化和设计新型生物材料、药物和功能量子材料。虽然过去几年在构建完美量子计算机方面取得了巨大进展,但当前的噪声中尺度量子 (NISQ) 技术距离能够在实际相关尺度上运行 Shor 和 Lloyd 算法可能还需要几十年的时间。根本原因是 NISQ 计算机拥有数百个量子位,而不是完全纠正噪声门操作产生的错误所需的数百万个量子位。这严重限制了与 NISQ 硬件兼容的量子算法的复杂性,并暴露了对进一步算法改进以实现实际量子优势的迫切需求。在这个项目中,PI 开发了针对 NISQ 量子处理单元 (QPU) 定制的算法,可以解决以下领域的基本挑战:非平衡物理。具体来说,研究团队提出了新的混合量子经典变分算法来模拟无序量子磁体等新型材料中的非平衡动力学和高激发态。这些算法将在 IBM 和 Rigetti 的 QPU 上实现,并针对现有最先进的量子和经典算法进行仔细的基准测试。除了寻找近期量子优势的机会外,该项目还将为相互作用的粒子系统如何松弛到热平衡以及它们如何响应强外部场等基本问题提供新的见解。该项目的教育部分涉及国家优先事项教育量子劳动力并提高 STEM 领域传统上代表性不足的群体的参与和包容性。在该项目中,PI 将教育和培训一名研究生、一名本科生和一名博士后学者应用量子计算算法来挑战开放的科学问题。 PI 还将设计一个关于量子计算的实践推广研讨会,并将其在“Go Far”上展示,这是一个针对女中学生和高中生的 STEM 职业会议。最后,PI 将为公众创建和维护一个在线博客,重点介绍量子信息科学的职业选择,并向读者介绍量子算法的最新趋势。技术摘要该奖项是根据量子算法挑战赛邀请的一项 EAGER 提案而颁发的 亲爱的同事信。它支持研究和教育,开发和实施在当前存在或不久的将来存在的量子计算机上运行的算法。正如谷歌团队最近所证明的那样,嘈杂的中级量子(NISQ)计算设备的计算能力超出了任何经典超级计算机的能力。它们是否也为物理、化学或材料科学感兴趣的计算提供实用的量子优势是一个悬而未决的问题。量子多体系统中非平衡动力学和高度激发态的模拟是一个有前途但具有挑战性的目标,因为此类模拟的经典算法受到一般激发态的指数复杂性和高度纠缠性质的影响。为当前 NISQ 硬件开发资源高效的量子算法可以释放其潜力,解决非平衡多体物理中的重要挑战。在这里,PI 提出了两种基于变分量子本征解算器 (VQE) 算法的新型变分量子算法,这已经在 NISQ 硬件上得到了演示。 PI 没有像以前的工作那样以基态为目标,而是建议使用不同的成本函数来探索多种高度激发和时间演化的量子态。在对已知的量子和经典算法进行仔细的基准测试后,这两种算法将用于解决强无序和相互作用的量子系统中的多体定位、非线性响应和非平衡动力学领域的基本开放科学问题。该项目将提高超越探索低能态性质的变分算法。这项研究的结果将深入了解强无序相互作用自旋链中高度激发态的性质,并解决多体局域相和迁移乳液的存在,这违反了本征态热化假说。研究小组还将揭示淬火后动力学中出现的热前量子态的相关性和纠缠特性,并测试它们的时间稳定性与小能量方差相关的假设,使它们近似本征态。最后,通过实施高效的 NISQ 量子算法来计算高阶和无序相关函数,PI 将确定这些函数是否能够消除无序和相互作用对准粒子性质的影响,并探索量子混沌的开始在自旋模型中。通过解决凝聚态物理的基本挑战,研究团队将为 NISQ 技术是否提供实用的量子优势这一悬而未决的问题做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational microcanonical estimator
  • DOI:
    10.1103/physrevresearch.5.033224
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Kl'ee Pollock;P. P. Orth-P.;Thomas Iadecola
  • 通讯作者:
    Kl'ee Pollock;P. P. Orth-P.;Thomas Iadecola
Error-mitigated simulation of quantum many-body scars on quantum computers with pulse-level control
  • DOI:
    10.1103/physrevresearch.4.043027
  • 发表时间:
    2022-10-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Chen, I. -Chi;Burdick, Benjamin;Iadecola, Thomas
  • 通讯作者:
    Iadecola, Thomas
Adaptive variational quantum eigensolvers for highly excited states
  • DOI:
    10.1103/physrevb.104.075159
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Feng Zhang;N. Gomes;Yongxin Yao;P. P. Orth-P.;Thomas Iadecola
  • 通讯作者:
    Feng Zhang;N. Gomes;Yongxin Yao;P. P. Orth-P.;Thomas Iadecola
Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression
  • DOI:
    10.1103/physrevresearch.4.023097
  • 发表时间:
    2022-05-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Berthusen, Noah F.;Trevisan, Thais, V;Orth, Peter P.
  • 通讯作者:
    Orth, Peter P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Iadecola其他文献

Nonergodic quantum dynamics from deformations of classical cellular automata
来自经典元胞自动机变形的非遍历量子动力学
  • DOI:
    10.1103/physrevb.102.180302
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Thomas Iadecola;S. Vijay
  • 通讯作者:
    S. Vijay
Floquet Insulators and Lattice Fermions.
Floquet 绝缘体和晶格费米子。
  • DOI:
    10.1103/physrevresearch.6.013098
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Thomas Iadecola;S. Sen;L. Sivertsen
  • 通讯作者:
    L. Sivertsen
Planar p-string condensation: Chiral fracton phases from fractional quantum Hall layers and beyond
平面 p 弦凝聚:来自分数量子霍尔层及其他层的手性分形相
  • DOI:
    10.1103/physrevb.103.205301
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Joseph Sullivan;Thomas Iadecola;D. Williamson
  • 通讯作者:
    D. Williamson
Kitaev model on a quantum computer using VQE with Majorana fermions
使用 VQE 和马约拉纳费米子的量子计算机上的 Kitaev 模型
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ammar Jahin;Andy Li;Thomas Iadecola;Peter P. Orth;G. Perdue;A. Macridin;M. S. Alam;N. Tubman
  • 通讯作者:
    N. Tubman
Quantum inverse freezing and mirror-glass order
量子逆冷冻和镜面玻璃秩序
  • DOI:
    10.1103/physrevb.98.144204
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Thomas Iadecola;M. Schecter
  • 通讯作者:
    M. Schecter

Thomas Iadecola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Iadecola', 18)}}的其他基金

CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
  • 批准号:
    2143635
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
  • 批准号:
    51808395
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2337930
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2038011
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
  • 批准号:
    2035876
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
  • 批准号:
    2037832
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
  • 批准号:
    2037987
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了