Freeze-Cast Manufacturing of Stable Iron-Alloy Foams for Energy Conversion and Storage

用于能量转换和存储的稳定铁合金泡沫的冷冻铸造制造

基本信息

  • 批准号:
    2015641
  • 负责人:
  • 金额:
    $ 41.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Freeze casting is a low-cost manufacturing technique for creating porous materials or foams. This award investigates freeze casting as a means to make iron-nickel, iron-cobalt, and iron-copper foams that help power batteries for storing energy on the electricity grid, or improve chemical looping technologies for capturing carbon dioxide emissions from power plants. By advancing the materials manufacturing for these applications, this project contributes to national energy security, climate action goals, and U.S. competitiveness in the advanced energy materials sector. The knowledge developed in freeze casting of porous materials also benefits other industrial sectors such as healthcare, via porous bone-replacement implants, and automotive and aerospace, via lightweight structures. One current limitation to using freeze-cast energy materials is that they degrade during use. To address this problem, this research investigates methods, such as adding an alloying element, to stabilize freeze-cast iron foams and increase their usable lifetime. The relationships between manufacturing parameters and materials performance lay the groundwork for optimization and commercialization of such freeze-cast alloys. This project actively promotes participation of women and underrepresented minorities in research and continues building interdisciplinary and international collaborations.In energy applications, such as high-temperature solid-oxide batteries or chemical looping combustion, iron-based redox materials rapidly degrade due to the repeated molar volume changes associated with oxidation/reduction reactions. The pore architecture of freeze-cast, lamellar foams is ideally suited to address this issue, as it provides space for each lamella to expand and contract freely, without constraints from neighboring lamellae. Nevertheless, mechanical degradation still occurs due to Kirkendall micropore formation from imbalanced diffusion fluxes and fracture/spallation of the oxide phase. Alloying iron foams with nickel, cobalt, or copper is investigated as a strategy to suppress the above degradation processes, by creating Ni-, Co- or Cu-rich ductile cores within the lamellae, and by making diffusional fluxes more balanced. In-situ synchrotron X-ray diffraction and nano-tomography are used to reveal the phase and microstructural evolution in these alloys during redox cycling. These in-situ studies are complemented by thermogravimetry, ex-situ redox cycling, and metallography studies. Lastly, CALPHAD, phase-field, and finite-element models are developed to help guide alloy and composition selection, with validation provided by experiment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冷冻铸造是一种用于制造多孔材料或泡沫的低成本制造技术。该奖项研究了冷冻铸造作为制造铁镍、铁钴和铁铜泡沫的一种方法,这些泡沫有助于动力电池在电网上储存能量,或改进化学循环技术以捕获发电厂的二氧化碳排放。通过推进这些应用的材料制造,该项目有助于国家能源安全、气候行动目标和美国在先进能源材料领域的竞争力。多孔材料冷冻铸造中开发的知识也有利于其他工业部门,例如通过多孔骨替代植入物的医疗保健,以及通过轻质结构的汽车和航空航天。目前使用冷冻铸造能源材料的一项限制是它们在使用过程中会降解。为了解决这个问题,本研究研究了添加合金元素等方法来稳定冷冻铸铁泡沫并延长其使用寿命。制造参数和材料性能之间的关系为此类冻铸合金的优化和商业化奠定了基础。该项目积极促进女性和代表性不足的少数群体参与研究,并持续建立跨学科和国际合作。在能源应用中,例如高温固体氧化物电池或化学循环燃烧,铁基氧化还原材料由于反复摩尔作用而迅速降解。与氧化/还原反应相关的体积变化。冷冻铸造层状泡沫的孔隙结构非常适合解决这个问题,因为它为每个薄片提供了自由膨胀和收缩的空间,而不受相邻薄片的限制。然而,由于不平衡的扩散通量和氧化物相的断裂/散裂形成柯肯德尔微孔,机械降解仍然发生。研究了将泡沫铁与镍、钴或铜合金化,作为抑制上述降解过程的策略,方法是在片层内产生富含镍、钴或铜的延性核,并使扩散通量更加平衡。原位同步加速器 X 射线衍射和纳米断层扫描用于揭示这些合金在氧化还原循环过程中的物相和微观结构演变。这些原位研究得到热重分析、异位氧化还原循环和金相研究的补充。最后,开发了 CALPHAD、相场和有限元模型,以帮助指导合金和成分选择,并通过实验进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sintering inhibition enables hierarchical porosity with extreme resistance to degradation during redox cycling of Fe-Mo foams
烧结抑制可实现分层孔隙率,并在 Fe-Mo 泡沫的氧化还原循环过程中具有极强的抗降解性
  • DOI:
    10.1016/j.actamat.2023.119015
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Mack, Jacob B.;Pennell, Samuel M.;Dunand, David C.
  • 通讯作者:
    Dunand, David C.
Microstructural evolution of lamellar Fe-25Ni foams during steam-hydrogen redox cycling
蒸汽-氢气氧化还原循环过程中层状 Fe-25Ni 泡沫的微观结构演化
  • DOI:
    10.1016/j.actamat.2022.118148
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Jacob B. Mack;Samuel M. Pennell;D. Dun
  • 通讯作者:
    D. Dun
Evolution of directionally freeze-cast Fe2O3 and Fe2O3+NiO green bodies during reduction and sintering to create lamellar Fe and Fe-20Ni foams
定向冷冻铸造 Fe2O3 和 Fe2O3 NiO 生坯在还原和烧结过程中的演变,以产生层状 Fe 和 Fe-20Ni 泡沫
  • DOI:
    10.1016/j.jallcom.2021.161707
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wilke, Stephen K.;Mack, Jacob B.;Kenel, Christoph;Dunand, David C.
  • 通讯作者:
    Dunand, David C.
Effects of bridging fibers on the evolution of lamellar architecture during H2/H2O redox cycling of Fe-foams
桥接纤维对泡沫铁 H2/H2O 氧化还原循环过程中层状结构演化的影响
  • DOI:
    10.1016/j.actamat.2022.118543
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Pennell, Samuel;Dunand, David
  • 通讯作者:
    Dunand, David
Evolution of lamellar architecture and microstructure during redox cycling of Fe-Co and Fe-Cu foams
Fe-Co 和 Fe-Cu 泡沫氧化还原循环过程中层状结构和微观结构的演变
  • DOI:
    10.1016/j.jallcom.2022.165606
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Pennell, Samuel M.;Mack, Jacob B.;Dunand, David C.
  • 通讯作者:
    Dunand, David C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Dunand其他文献

David Dunand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Dunand', 18)}}的其他基金

Ferroalloys and Stainless Steels with Low Carbon Footprint via Hydrogen Reduction of Oxide Blends
通过氧化物混合物的氢还原实现低碳足迹的铁合金和不锈钢
  • 批准号:
    2317002
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders
利用氧化物和氢化物粉末基于墨水增材制造高熵合金
  • 批准号:
    2004769
  • 财政年份:
    2020
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
Processing of Advanced Foam Scaffolds for Iron-Air Battery Applications
用于铁-空气电池应用的先进泡沫支架的加工
  • 批准号:
    1562941
  • 财政年份:
    2016
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
Size Effect on the Evolution of Kirkendall Pores in Ti-Coated Ni Wires
镀钛镍丝柯肯德尔孔演化的尺寸效应
  • 批准号:
    1611308
  • 财政年份:
    2016
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers
合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应
  • 批准号:
    1207282
  • 财政年份:
    2012
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
  • 批准号:
    0805064
  • 财政年份:
    2008
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Continuing Grant
Student Participant Support for the 5th International Conference MetFoam 2007, Montreal, Canada, September, 2007
2007 年第五届 MetFoam 国际会议的学生参与者支持,加拿大蒙特利尔,2007 年 9 月
  • 批准号:
    0710832
  • 财政年份:
    2007
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
In-Situ Processing of Superconducting MgB2-Metal Composites
超导 MgB2-金属复合材料的原位加工
  • 批准号:
    0319051
  • 财政年份:
    2003
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
SGER: Superconducting MgB2/Metal Composites
SGER:超导 MgB2/金属复合材料
  • 批准号:
    0233805
  • 财政年份:
    2002
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
The Role of Surface Reactions and Hydrogen Surface Diffusivity on the Environmental Embrittlement of (Ni,Fe)Ti Alloys
表面反应和氢表面扩散率对 (Ni,Fe)Ti 合金环境脆化的作用
  • 批准号:
    0095381
  • 财政年份:
    2001
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

CAST基因内含子可变剪切突变Chr5:93436383G>A影响绵羊肉嫩度的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于张衡一号卫星的人工地基VLF波的电子沉降带研究
  • 批准号:
    41904149
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
投掷角相关的辐射带径向扩散机制研究
  • 批准号:
    41974194
  • 批准年份:
    2019
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
突触前蛋白CAST/ELKS在突触传递和可塑性中的作用及机制的研究
  • 批准号:
    31871031
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
低频电磁波驱动的地球辐射带能量电子蝴蝶型分布恢复过程
  • 批准号:
    41774194
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of environment-friendly as-cast Ti alloys both by simplifying the manufacturing process and expanding the alloy compositional area
简化制造工艺、扩大合金成分范围,开发环境友好型铸态钛合金
  • 批准号:
    18K11712
  • 财政年份:
    2018
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Innovative segregation-less large-scale structural steel manufacturing technology combining vacuum cast-in casting and hot forging
真空连铸与热锻相结合的创新型无偏析大型结构钢制造技术
  • 批准号:
    16K06818
  • 财政年份:
    2016
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of efficient and scalable ultrasound-assisted solidification technologies for manufacturing advanced metallic alloys (Ultra-Cast)
开发高效且可扩展的超声辅助凝固技术,用于制造先进金属合金(Ultra-Cast)
  • 批准号:
    EP/L019825/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Research Grant
Development of efficient and scalable ultrasound-assisted solidification technologies for manufacturing advanced metallic alloys (Ultra-Cast)
开发高效且可扩展的超声辅助凝固技术,用于制造先进金属合金(Ultra-Cast)
  • 批准号:
    EP/L019884/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Research Grant
Development of efficient and scalable ultrasound-assisted solidification technologies for manufacturing advanced metallic alloys (Ultra-Cast)
开发高效且可扩展的超声辅助凝固技术,用于制造先进金属合金(Ultra-Cast)
  • 批准号:
    EP/L019965/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了