New Directions in Bayesian Change-Point Analysis

贝叶斯变点分析的新方向

基本信息

  • 批准号:
    2015460
  • 负责人:
  • 金额:
    $ 14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Almost all dynamic and random processes in nature go through sudden and significant structural changes. Often the change is in the observable quantity, e.g. fuel prices or stock indices or crime activities changing significantly in response to a change in an unobservable, latent factor such as an economic phenomenon or a public policy change, or a disease outbreak. Such ‘change-points’ are routinely observed across all scientific disciplines and applications, such as economics, epidemiology, social sciences, cybersecurity and finance. Specific examples could be changing regression when the observed variable depends on predictors through a mean structure that changes with time, or change points in data with massive dimensions, such as high-resolution imaging data or complex connected graphs. While there is a substantial literature proposing elaborate methods for detecting change points in different settings, there has been limited consideration of Bayesian methods for change-points in hierarchical models with complex dependence or sparsity structures. This research fills this gap with new statistical tools motivated by specific real-life applications, by developing theoretical framework while retaining efficiency and usefulness in current applications. The project integrates graduate education and training with statistical research, and emphasizes upholding societal and ethical considerations that create and foster an inclusive and diverse community.In higher dimensions, the problem of detecting change-points and the changing structure is often rendered extremely difficult owing to a combinatorial computational complexity. Through this research, the PIs outline a comprehensive framework, both theoretical and methodological, in the context of change point estimation encompassing problems that may arise in different field of applications. In particular, the PIs build fundamentally new Bayesian methods that can 1) perform sparse signal recovery in a changing linear regression with consistency guarantees 2) detect change-points in dependence structure via changes in a Gaussian graphical model, and 3) build an innovative method for handling ‘ultra-high’-dimensional objects via random projections to drastically reduce the computational burden. Theoretical machinery will be developed to provide probabilistic rigor and consistency guarantee. Computationally efficient algorithms will be developed, and user-friendly software tools will be deployed in R for the usage of the developed methods by the scientific community at large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中几乎所有的动态和随机过程都会经历突然且重大的结构变化,例如,燃料价格或股票指数或犯罪活动会因不可观察的潜在因素(例如经济损失)的变化而发生显着变化。经济现象或公共政策变化或疾病爆发在所有科学学科和应用中都经常观察到这种“变化点”,例如经济学、流行病学、社会科学、网络安全和金融。观察到的变量取决于随时间变化的平均结构的预测变量,或大尺寸数据中的变化点,例如高分辨率成像数据或复杂的连通图,尽管有大量文献提出了在不同设置下检测变化点的详细方法。 ,对于具有复杂依赖或稀疏结构的层次模型中的变化点的贝叶斯方法的考虑有限。这项研究通过开发理论框架,同时保留效率和实用性,用由特定现实生活应用推动的新统计工具填补了这一空白。当前的应用程序。该项目将研究生教育和培训与统计研究相结合,并强调维护社会和道德考虑,以创建和培育包容性和多元化的社区。在更高的维度上,由于通过这项研究,PI 在变化点估计的背景下概述了一个全面的理论和方法框架,涵盖了不同应用领域中可能出现的问题,特别是,PI 构建了全新的贝叶斯方法。 1) 在变化的线性回归中执行稀疏信号恢复并保证一致性 2) 通过高斯图模型的变化检测依赖结构中的变化点,以及 3) 构建一种通过随机处理“超高”维对象的创新方法将开发理论机制以提供概率严谨性和计算效率的一致性保证,并将在 R 中部署用户友好的软件工具以供使用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint mean–covariance estimation via the horseshoe
通过马蹄形进行联合均值协方差估计
  • DOI:
    10.1016/j.jmva.2020.104716
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Li, Yunfan;Datta, Jyotishka;Craig, Bruce A.;Bhadra, Anindya
  • 通讯作者:
    Bhadra, Anindya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nilabja Guha其他文献

A Bayesian survival treed hazards model using latent Gaussian processes.
使用潜在高斯过程的贝叶斯生存树危险模型。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Richard D. Payne;Nilabja Guha;Bani Mallick
  • 通讯作者:
    Bani Mallick
On Posterior consistency of Bayesian Changepoint models
贝叶斯变点模型的后验一致性
Bayesian and variational Bayesian approaches for flows in heterogeneous random media
针对异构随机介质中的流动的贝叶斯和变分贝叶斯方法
  • DOI:
    10.1016/j.jcp.2017.04.034
  • 发表时间:
    2016-11-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keren Yang;Nilabja Guha;Y. Efendiev;B. Mallick
  • 通讯作者:
    B. Mallick
Multilevel approximate Bayesian approaches for flows in highly heterogeneous porous media and their applications
高度异质多孔介质流动的多级近似贝叶斯方法及其应用
  • DOI:
    10.1016/j.cam.2016.10.008
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nilabja Guha;Xiaosi Tan
  • 通讯作者:
    Xiaosi Tan
Nonparametric Bayesian Methods for Benchmark Dose Estimation
用于基准剂量估计的非参数贝叶斯方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Nilabja Guha;A. Roy;L. Kopylev;J. Fox;M. Spassova;Paul A. White
  • 通讯作者:
    Paul A. White

Nilabja Guha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于固定路线营运车辆动力响应的桥梁快速巡检与状态评估方法研究
  • 批准号:
    52378145
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
切换通信拓扑与不利道路线形耦合条件下多车队列系统协同控制
  • 批准号:
    62303134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气候变化对古丝绸之路交通路线变迁的影响研究
  • 批准号:
    42371172
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
国家可持续议程创新示范区建设路径差异与发展路线图研究
  • 批准号:
    42301326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于渔场不确定时空分布的远洋捕捞路线优化研究
  • 批准号:
    72301225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了