Strongly-Correlated Hybrid Light-Matter Systems

强相关混合光物质系统

基本信息

  • 批准号:
    2037158
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports an integrated research, education, and outreach program in theoretical condensed matter and materials physics. One of the major goals of modern physics is to discover and engineer new materials with useful properties. The conventional approach to material discovery often involves the trial and error method of examining various electronic compounds in the search of desirable functionalities. This project puts forward a new paradigm for functional material design by combining the rich physics of electrons in solids with laser physics and the optics toolbox. The goal of the project is to put together the theoretical foundation of the nascent field of light-matter coupled materials, where material properties could be tuned at will by controlling the optical environment and/or coupling of electronic, magnetic, and sound modes in solid-state materials to light. Of particular interest are so-called quantum fluids of light, where part-matter and part-light particles form a unique state called a Bose-Einstein condensate. In Bose-Einstein condensates, all constituent particles flow in unison without friction. Another related example of research, supported by this award, is light-induced superconductivity. Superconductivity is a Bose-Einstein condensate of charged particles, which forms in some metals at low temperatures. In this state, electrons flow without any resistance and can indefinitely sustain currents and magnetic fields. Superconductors are of outmost importance to various technologies, from their ubiquitous use in magnetic resonance imaging machines to components of magnetically levitating trains to ultra-sensitive magnetic sensors to superconducting quantum bits in various quantum computing architectures. However, their usefulness is often limited by prohibitively low temperatures, where superconductivity usually emerges. This project will develop novel approaches to enhancing superconductivity to higher temperatures by coupling superconducting materials to light. The research activity will go hand in hand with an education and outreach program, which is an integral part of this award. The program will involve mentoring high-school students from the Washington, DC area's magnet schools and organizing events and competitions in the fields of science, technology, engineering and mathematics. PI's prior high-school advisees have won national awards with PI's research projects and successfully participated in the international physics Olympiads. The PI will continue this successful mentoring program. The PI will also involve students from the historically black colleges and universities in the Washington, DC area. Apart from this, a quality massive open online course on condensed matter physics will be developed with an eye on exposing the students to research in quantum science and material physics. The PI has previously developed such a course on graduate quantum physics, which has been taken by more than 100,000 students worldwide. The broader impacts of all these activities will be early exposure of young talented students to cutting edge research, which will help attract students to careers in science, technology, engineering, and mathematics. Finally, this award will support recruiting and advising undergraduate students, graduate and postdoctoral researchers from underrepresented backgrounds to participate in condensed matter and materials research. TECHNICAL SUMMARYThis award supports an integrated research, education, and outreach program in theoretical condensed matter and materials physics. The emphasis is on relating exciting theoretical results and ideas to experiment and communicating them to a broad audience. The research part of the project is motivated by significant new theoretical and experimental developments and is devoted to theoretical studies of strongly-correlated electron systems interacting with quantum light. The research will focus on:1. Strongly-correlated polariton matter. Exciton-polaritons are part-light, part-matter quantum quasiparticles, resulting from strong light-matter coupling in a combined structure of semiconductor quantum wells and cavity photons. The PI will develop a generalization of this polaritonic matter in strongly-correlated quantum materials, by hybridizing collective modes of the interacting electron systems with light. 2. Cavity-enhanced superconductivity. It has been long known that subjecting a superconductor to external classical radiation can lead to an enhancement of superconductivity in it. The PI will explore quantum generalization of these phenomena, by considering a superconductor interacting with a photon field in optical cavities with an eye on experimentally relevant protocols for cavity-induced enhancement of superconductivity.3. Peierls superradiance. Peierls transition is a spontaneous distortion of a crystal lattice driven by electronic correlations in one-dimensional systems. By exploiting an analogy between the electron-phonon coupling in solids and matter-light coupling in optical cavities, the PI will explore the possibility of spontaneous formation of "photon crystals" driven by a photonic analogue of the Peierls effect.The research activity will go hand in hand with an education and outreach program, which is an integral part of this award. The program will involve mentoring high-school students from the Washington, DC area's magnet schools and organizing events and competitions in the fields of science, technology, engineering, and mathematics. PI's prior high-school advisees have won national awards with PI's research projects and successfully participated in the international physics Olympiads. The PI will continue this successful mentoring program. The PI will also involve students from the historically black colleges and universities in the Washington, DC area. Apart from this, a quality massive open online course on condensed matter physics will be developed with an eye on exposing the students to research in quantum science and material physics. The PI has previously developed such a course on graduate quantum physics, which has been taken by more than 100,000 students worldwide. The broader impacts of all these activities will be early exposure of young talented students to cutting edge research, which will help attract students to careers in science, technology, engineering, and mathematics. Finally, this award will support recruiting and advising undergraduate students, graduate and postdoctoral researchers from underrepresented backgrounds to participate in condensed matter and materials research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理论凝聚态和材料物理领域的综合研究、教育和推广计划。现代物理学的主要目标之一是发现和设计具有有用特性的新材料。材料发现的传统方法通常涉及检查各种电子化合物以寻找所需功能的试错法。该项目将固体中丰富的电子物理与激光物理和光学工具箱相结合,提出了功能材料设计的新范例。该项目的目标是整合光物质耦合材料新兴领域的理论基础,通过控制固体中的光学环境和/或电子、磁和声模式的耦合,可以随意调整材料特性- 说明材料的光。特别令人感兴趣的是所谓的光量子流体,其中部分物质和部分光粒子形成一种独特的状态,称为玻色-爱因斯坦凝聚态。在玻色-爱因斯坦凝聚中,所有组成粒子一致流动,没有摩擦。该奖项支持的另一个相关研究例子是光诱导超导。超导性是带电粒子的玻色-爱因斯坦凝聚,在低温下在某些金属中形成。在这种状态下,电子流动时没有任何阻力,并且可以无限期地维持电流和磁场。超导体对于各种技术都至关重要,从磁共振成像机中的普遍使用到磁悬浮列车的组件,再到超灵敏磁传感器,再到各种量子计算架构中的超导量子位。然而,它们的实用性往往受到超导性通常出现的极低温度的限制。该项目将开发新方法,通过将超导材料与光耦合来将超导性增强到更高的温度。研究活动将与教育和推广计划齐头并进,这是该奖项不可或缺的一部分。该计划将包括指导华盛顿特区精英学校的高中生,并组织科学、技术、工程和数学领域的活动和竞赛。 PI之前的高中指导老师曾凭借PI的研究项目获得过国家奖项,并成功参加了国际物理奥林匹克竞赛。 PI 将继续这一成功的指导计划。 PI 还将邀请来自华盛顿特区历史悠久的黑人学院和大学的学生。除此之外,还将开发一门关于凝聚态物理的高质量大规模开放在线课程,着眼于让学生接触量子科学和材料物理的研究。 PI此前曾开发过这样一门研究生量子物理课程,全球已有超过10万名学生学习过该课程。 所有这些活动的更广泛影响将是年轻有才华的学生尽早接触前沿研究,这将有助于吸引学生从事科学、技术、工程和数学领域的职业。最后,该奖项将支持招募和建议来自弱势背景的本科生、研究生和博士后研究人员参与凝聚态和材料研究。技术摘要该奖项支持理论凝聚态和材料物理领域的综合研究、教育和推广计划。重点是将令人兴奋的理论结果和想法与实验联系起来,并将其传达给广大受众。该项目的研究部分受到重大新理论和实验发展的推动,致力于强相关电子系统与量子光相互作用的理论研究。研究将集中于: 1.强相关极化子物质。激子极化子是部分光、部分物质的量子准粒子,是由半导体量子阱和腔光子的组合结构中的强光-物质耦合产生的。 PI 将通过将相互作用的电子系统的集体模式与光混合,在强相关量子材料中开发这种极化子物质的推广。 2.空腔增强超导性。人们早就知道,使超导体受到外部经典辐射可以导致其超导性增强。 PI 将通过考虑超导体与光腔中光子场的相互作用来探索这些现象的量子推广,并着眼于腔诱导超导增强的实验相关协议。3。佩尔斯的超光辉。佩尔斯转变是一维系统中由电子关联驱动的晶格的自发变形。通过利用固体中的电子-声子耦合和光学腔中的物质-光耦合之间的类比,PI 将探索由佩尔斯效应的光子类似物驱动的自发形成“光子晶体”的可能性。研究活动将进行与教育和推广计划携手合作,这是该奖项的一个组成部分。该计划将包括指导华盛顿特区精英学校的高中生,并组织科学、技术、工程和数学领域的活动和竞赛。 PI之前的高中指导老师曾凭借PI的研究项目获得过国家奖项,并成功参加了国际物理奥林匹克竞赛。 PI 将继续这一成功的指导计划。 PI 还将邀请来自华盛顿特区历史悠久的黑人学院和大学的学生。除此之外,还将开发一门关于凝聚态物理的高质量大规模开放在线课程,着眼于让学生接触量子科学和材料物理的研究。 PI此前曾开发过这样一门研究生量子物理课程,全球已有超过10万名学生学习过该课程。 所有这些活动的更广泛影响将是年轻有才华的学生尽早接触前沿研究,这将有助于吸引学生从事科学、技术、工程和数学领域的职业。最后,该奖项将支持招募和建议来自弱势群体的本科生、研究生和博士后研究人员参与凝聚态物质和材料研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface Cooper-Pair Spin Waves in Triplet Superconductors
三重态超导体中的表面库珀对自旋波
  • DOI:
    10.1103/physrevlett.129.237002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Poniatowski, Nicholas R.;Curtis, Jonathan B.;Bøttcher, Charlotte G. L.;Galitski, Victor M.;Yacoby, Amir;Narang, Prineha;Demler, Eugene
  • 通讯作者:
    Demler, Eugene
Enhancement of superconductivity with external phonon squeezing
通过外部声子挤压增强超导性
  • DOI:
    10.1103/physrevb.104.l220503
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Grankin, Andrey;Hafezi, Mohammad;Galitski, Victor M.
  • 通讯作者:
    Galitski, Victor M.
Dark Andreev states in superconductors
超导体中的暗安德烈耶夫态
  • DOI:
    10.1103/physrevb.108.024501
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Grankin, Andrey;Galitski, Victor
  • 通讯作者:
    Galitski, Victor
Loschmidt echo of far-from-equilibrium fermionic superfluids
远离平衡态费米子超流体的洛施密特回波
  • DOI:
    10.1016/j.aop.2021.168554
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Rylands, Colin;Yuzbashyan, Emil A.;Gurarie, Victor;Zabalo, Aidan;Galitski, Victor
  • 通讯作者:
    Galitski, Victor
Probing Many-Body Quantum Chaos with Quantum Simulators
  • DOI:
    10.1103/physrevx.12.011018
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Lata Kh Joshi;A. Elben;Amit Vikram;B. Vermersch;V. Galitski;P. Zoller
  • 通讯作者:
    Lata Kh Joshi;A. Elben;Amit Vikram;B. Vermersch;V. Galitski;P. Zoller
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Galitski其他文献

Proof of a Universal Speed Limit on Fast Scrambling in Quantum Systems
量子系统中快速加扰的通用速度限制的证明
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Vikram;Laura Shou;Victor Galitski
  • 通讯作者:
    Victor Galitski
The Glass Transition of Quantum Hard Spheres in High Dimensions
高维量子硬球的玻璃化转变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Winer;Christopher L. Baldwin;Richard Barney;Victor Galitski;Brian Swingle
  • 通讯作者:
    Brian Swingle

Victor Galitski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Galitski', 18)}}的其他基金

Dynamics of quantum many-body systems
量子多体系统动力学
  • 批准号:
    1613029
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Fluctuation Phenomena Near Quantum Phase Transitions
职业:量子相变附近的涨落现象
  • 批准号:
    0847224
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
  • 批准号:
    82301231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
  • 批准号:
    82360339
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
去泛素化酶OTUB1通过稳定CREBH调控TREM2+脂相关巨噬细胞的功能在NASH中的机制研究
  • 批准号:
    82370589
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FBXO38调控肿瘤相关巨噬细胞的功能和机制研究
  • 批准号:
    82303154
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2419382
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
  • 批准号:
    2333941
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了