RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
基本信息
- 批准号:2032114
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to open up the economy in light of the reality of COVID-19, a suite of solutions are needed to minimize the spread of COVID-19 which include providing tools for businesses to minimize the risk for their employees and customers. It is important to detect transmission hotspots where the contact between infected and uninfected persons is higher than average. This project will provide information to assess precisely the size, density and locations of COVID-19 hotspots and enable issuing well-informed advisories based on data-driven continuous risk assessment. Every step will be taken to ensure privacy and network security and specific algorithms will be developed for secure access and information transfer. The project will access databases at CDC, Johns Hopkins and the WHO, and create a comprehensive website to disseminate real-time localized COVID-19 hotspot data, while maintaining privacy. The project will create new algorithms and embed them in iOS and Android apps that will continuously interact with databases. The software for mobile devices as well as central hubs will be made publicly available through APIs for use by the broader community.The project will use advanced consensus-based methods for estimating network area/size, node locations and node counts in a network based on minimal transmit-receive data. The proposed methods will lead to significant improvements compared to existing algorithms. The project will design consensus-based algorithms to estimate (a) the center, radius, and consequently, the size of the network, and (b) the number of users in the network. Localization algorithms will be designed that work with noisy and incomplete data. The proposed work is different from the contact-tracing technology used by Google and Apple which is limited to newer devices. The proposed algorithms and software will advance the state of the art while retaining compatibility with emerging and existing mobile technology. The project will help reduce COVID-19 infections and save lives. The research will also have applicability to other fields such as the E911 system, indoor user tracking, infrastructure-free implementations applicable to robotics, autonomous systems and vehicle fleets, and location-aware patient care and other mobile health applications. The developed algorithms can be used in other emergency situations, such as locating clusters of sheltering groups in the case of earthquakes and tsunamis, to assist first responders in finding survivors after an event, and for detection of transmission nodes in the case of future pandemics or future waves of COVID-19. Outreach activities will be integrated with the research and include the creation of software and web content for dissemination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了鉴于Covid-19的现实开放经济,需要一套解决方案来最大程度地减少Covid-19的传播,其中包括为企业提供工具,以最大程度地降低员工和客户的风险。检测传播热点很重要,其中感染者和未感染者之间的接触高于平均水平。该项目将提供信息,以精确评估Covid-19 Hotspots的大小,密度和位置,并根据数据驱动的持续风险评估启用良好的咨询。将采取每一步,以确保将开发隐私和网络安全以及特定算法以进行安全访问和信息传输。该项目将访问CDC,Johns Hopkins和WHO的数据库,并创建一个全面的网站,以传播实时局部COVID-19 Hotspot数据,同时保持隐私。该项目将创建新算法并将其嵌入iOS和Android应用中,这些应用程序将与数据库不断交互。移动设备和中央集线器的软件将通过API公开提供,以供更广泛的社区使用。该项目将使用基于高级共识的方法来估计网络/节点位置,节点位置和节点计数,基于最小的传输数据。与现有算法相比,提出的方法将导致显着改善。该项目将设计基于共识的算法来估计(a)中心,半径,因此是网络的大小,以及(b)网络中用户数量。本地化算法将设计与嘈杂和不完整的数据一起使用。拟议的工作不同于Google和Apple使用的接触追踪技术,该技术仅限于新设备。拟议的算法和软件将推动最新技术的状态,同时保留与新兴和现有移动技术的兼容性。该项目将有助于减少19日感染并挽救生命。这项研究还将适用于其他领域,例如E911系统,室内用户跟踪,适用于机器人技术,自动驾驶系统和车队的无基础设施实现以及位置感知的患者护理以及其他移动健康应用程序。开发的算法可用于其他紧急情况,例如在地震和海啸的情况下定位庇护所的群体,以帮助急救人员在事件发生后找到幸存者,并在未来的大语或未来的covid-19次波那样检测传播节点。外展活动将与研究融合,并包括创建软件和Web内容以进行传播。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Spanias其他文献
Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Despeckle Filtering Algorithms and Software for Ultrasound Imaging Synthesis Lectures on Algorithms and Software in Engineering #1
超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 超声成像去斑滤波算法和软件 工程算法和软件综合讲座
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Loizou;C. Pattichis;Eleni Loizou;Andreas Spanias - 通讯作者:
Andreas Spanias
Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
- DOI:
10.1109/iscas.1991.176430 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
M. E. Deisher;Andreas Spanias - 通讯作者:
Andreas Spanias
Gradient projection-based channel equalization under sustained fading
- DOI:
10.1016/j.sigpro.2007.07.014 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:
- 作者:
Venkatraman Atti;Andreas Spanias;Kostas Tsakalis;Constantinos Panayiotou;Leon Iasemidis;Visar Berisha - 通讯作者:
Visar Berisha
Introducing Quantum Computing in a Sophomore Signals and Systems Course
在大二信号与系统课程中介绍量子计算
- DOI:
10.1109/fie58773.2023.10343312 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chao Wang;Aradhita Sharma;Glen S. Uehara;Leslie Miller;Deep Pujara;W. Barnard;Jean Larson;Andreas Spanias - 通讯作者:
Andreas Spanias
Quantum and Classical Machine Learning Algorithm Comparisons for Monitoring PV Array Faults with Emphasis to Shading Detection
用于监测光伏阵列故障的量子和经典机器学习算法比较,重点是阴影检测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kaden McGuffie;Glen S. Uehara;Sameeksha Katoch;Andreas Spanias - 通讯作者:
Andreas Spanias
Andreas Spanias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Spanias', 18)}}的其他基金
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
- 批准号:
2215998 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
- 批准号:
2019068 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
- 批准号:
1953745 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
- 批准号:
1854273 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
- 批准号:
1659871 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
- 批准号:
1540040 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
- 批准号:
1646542 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
- 批准号:
1550393 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
- 批准号:
1525716 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant