RAPID: Ionic Modulation of COVID Through Ceramic Surfaces for Deactivation

RAPID:通过陶瓷表面对 COVID 进行离子调制以使其失活

基本信息

  • 批准号:
    2031199
  • 负责人:
  • 金额:
    $ 15.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: The goal of this research project is to actively capture and decontaminate surfaces from the COVID-19 virus. This project studies atomically tailored ceramic surface coatings by examining ionic exchange, dielectric properties, and physical texturing. Surface activated ceramic particles are interesting due to their biocompatible nature and effective antigerm activity. The size, shape, and morphology of the particles also impact antigerm responses. The possible mechanisms for antiviral activity include both atomic-scale physical and chemical interactions with the virus' body including spike, coating, and capsid. Chemical interactions include photo-activation of the particles, the formation of reactive oxygen species, and metal ion release, while physical interactions include membrane disruption and mechanical damage to the virus. This research applies advanced indirect and direct techniques to study the interaction of the ceramic with the virus at multiple length scales. This project is especially timely for the protection of multiple surfaces, since the US will reopen in the coming months. The project involves teamwork among scientists, engineers, educators, and industry experts. Training the next generation of the workforce with the ability to grasp the philosophy of convergence is another key outcome of this project.TECHNICAL DETAILS: Coronavirus particles have spike proteins (S-proteins) that are responsible for the attachment to the host cells. Specifically, in humans, the SARS and SARS-CoV-2 species have been shown to interact with the host cell receptor protein ACE2 (a zinc metalloprotein). This virus-cell binding is controlled by the polar interaction between the protein molecules. This research project focuses on using polar ceramic-based structures for the capture and deactivation of the coronavirus. Ionic ceramic solids show intrinsic polarity due to the unique arrangement of atoms across different crystalline facets. For example, the alternate basal planes along [0001] direction contain two separate atoms, which lead to intrinsic polarity. The central hypothesis of this research is that ionic surface defects and the polarity on the surface of ceramic particles benefit the effective capture of coronavirus particles and their subsequent deactivation through ionic modulation. Characterization techniques such as atomic force microscopy (AFM) and transmission electron microscopy (TEM) are being used for the analysis of physical defects. The effect of ionicity on capture and deactivation is being tested via indirect and direct methods. The indirect testing protocol includes inoculation of the surfaces with virus particles and then measuring the number of infectious virus particles. Successful findings are being applied to hard and porous surfaces for aerospace, automotive, retail, and other critical industry sectors.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplement allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该研究项目的目标是主动捕获和净化表面的 COVID-19 病毒。该项目通过检查离子交换、介电性能和物理纹理来研究原子定制的陶瓷表面涂层。表面活性陶瓷颗粒因其生物相容性和有效的抗菌活性而备受关注。颗粒的大小、形状和形态也会影响抗菌反应。抗病毒活性的可能机制包括与病毒体(包括刺突、涂层和衣壳)的原子级物理和化学相互作用。化学相互作用包括颗粒的光活化、活性氧的形成和金属离子的释放,而物理相互作用包括膜破坏和对病毒的机械损伤。这项研究应用先进的间接和直接技术来研究陶瓷与病毒在多个长度尺度上的相互作用。由于美国将在未来几个月内重新开放,因此该项目对于保护多个表面尤其及时。该项目涉及科学家、工程师、教育工作者和行业专家的团队合作。培训下一代劳动力使其能够掌握融合理念是该项目的另一个关键成果。技术细节:冠状病毒颗粒具有刺突蛋白(S 蛋白),负责附着到宿主细胞上。具体而言,在人类中,SARS 和 SARS-CoV-2 物种已被证明与宿主细胞受体蛋白 ACE2(一种锌金属蛋白)相互作用。这种病毒与细胞的结合是由蛋白质分子之间的极性相互作用控制的。该研究项目的重点是使用极性陶瓷结构来捕获和灭活冠状病毒。由于原子在不同晶面上的独特排列,离子陶瓷固体表现出固有的极性。例如,沿[0001]方向的交替基面包含两个单独的原子,这导致固有极性。这项研究的中心假设是,陶瓷颗粒表面的离子表面缺陷和极性有利于冠状病毒颗粒的有效捕获以及随后通过离子调制使其失活。原子力显微镜 (AFM) 和透射电子显微镜 (TEM) 等表征技术正用于分析物理缺陷。离子性对捕获和失活的影响正在通过间接和直接方法进行测试。间接测试方案包括用病毒颗粒接种表面,然后测量传染性病毒颗粒的数量。成功的研究结果正应用于航空航天、汽车、零售和其他关键行业领域的硬质和多孔表面。这笔赠款的发放使用的是分配给 MPS 的《冠状病毒援助、救济和经济安全 (CARES) 法案》补充文件提供的资金该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biological strategies from natural structures for resilience in manufacturing
Quo Vadimus: Humanism, Going Beyond the Boundaries of Capitalism and Socialism
Quo Vadimus:人文主义,超越资本主义和社会主义的界限
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajay Malshe其他文献

Ajay Malshe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajay Malshe', 18)}}的其他基金

Collaborative Research: Design and Fundamental Understanding of Advanced Minimum Quantity Lubrication (MQL) Machining using Nanolubricants
合作研究:使用纳米润滑剂进行先进微量润滑 (MQL) 加工的设计和基本理解
  • 批准号:
    0927541
  • 财政年份:
    2009
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Workshop/Collaborative Research: Grand Challenges for Bio-Nano Integrated Manufacturing for Year 2020; October 3-5, 2007; Arlington, Virginia
研讨会/合作研究:2020年生物纳米集成制造的巨大挑战;
  • 批准号:
    0738380
  • 财政年份:
    2007
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Collaborative Workshop on Bio-Nano Manufacturing for Cellular Engineering; March, 2007; NIST, Gaithersburg, Maryland
细胞工程生物纳米制造合作研讨会;
  • 批准号:
    0650106
  • 财政年份:
    2006
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
GOALI: Mechanically Biased Self-Assembly of 2-D and 3-D Quantum Structures Using a Novel Nanostamping Process
GOALI:使用新型纳米冲压工艺进行 2D 和 3D 量子结构的机械偏置自组装
  • 批准号:
    0600707
  • 财政年份:
    2006
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
SGER: SMART Integrated System for Water Health Monitoring and Decontamination: Addressing Aftermath of Hurricane Katrina and Alike Situations
SGER:用于水健康监测和净化的智能集成系统:解决卡特里娜飓风和类似情况的后果
  • 批准号:
    0635412
  • 财政年份:
    2006
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
GOALI: Wafer-Level and Chip-Scale Packaging (WL-CSP) of MEMS
GOALI:MEMS 晶圆级和芯片级封装 (WL-CSP)
  • 批准号:
    0501597
  • 财政年份:
    2005
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Collaborative Research: SGER: Feasibility of a New Nano-Composite cBN Coating Method for Next Generation Cutting Tools for Harsh Hard Machining
合作研究:SGER:新型纳米复合材料 cBN 涂层方法的可行性,用于下一代严酷硬加工切削刀具
  • 批准号:
    0548417
  • 财政年份:
    2005
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Development Of Nano-Electrical Discharge Machining (NANO-EDM) For Advanced Manufacturing
合作研究:开发用于先进制造的纳米放电加工(NANO-EDM)
  • 批准号:
    0423698
  • 财政年份:
    2004
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
SGER: Explore Feasibility of a Novel Nano Mechanical Machining System-on-a-Chip (SOAC) for Nano Manufacturing
SGER:探索用于纳米制造的新型纳米机械加工片上系统 (SOAC) 的可行性
  • 批准号:
    0236465
  • 财政年份:
    2002
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
NSF Tri-National Workshop - Advances in Micro and Nano Technologies for Sensing Applications
NSF 三国研讨会 - 传感应用微纳米技术的进展
  • 批准号:
    0307610
  • 财政年份:
    2002
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant

相似国自然基金

等离子体调制碳基亚纳米过渡金属及其氧电极催化强化机制研究
  • 批准号:
    22379020
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于等离子体调制的无机载流子传输层机理及应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多肽手性自组装调制的光离子纳米膜生物传感
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
阴阳离子双金属位点表面调制与光催化Minisci烷基化反应的机制研究
  • 批准号:
    22261042
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
超表面双向等离子体增强的弹光调制椭偏成像传感方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic modulation of ionic and lipid signaling by neuronal Kv2 channels
神经元 Kv2 通道对离子和脂质信号传导的动态调节
  • 批准号:
    9981844
  • 财政年份:
    2018
  • 资助金额:
    $ 15.11万
  • 项目类别:
Dynamic modulation of ionic and lipid signaling by neuronal Kv2 channels
神经元 Kv2 通道对离子和脂质信号传导的动态调节
  • 批准号:
    9765044
  • 财政年份:
    2018
  • 资助金额:
    $ 15.11万
  • 项目类别:
Project 1: Ionic Modulation of Chromatin in Cancer
项目 1:癌症中染色质的离子调节
  • 批准号:
    8866970
  • 财政年份:
    2015
  • 资助金额:
    $ 15.11万
  • 项目类别:
High-resolution analysis on ionic-liquid/electrode interfaces by freqency modulation AFM
通过调频 AFM 对离子液体/电极界面进行高分辨率分析
  • 批准号:
    24760027
  • 财政年份:
    2012
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of solid state ionic conductors by crystal lattice modulation
通过晶格调制开发固态离子导体
  • 批准号:
    23686020
  • 财政年份:
    2011
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了