Quantum Simulation of Turbulence with Cold Atoms
冷原子湍流的量子模拟
基本信息
- 批准号:2012190
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum vortices - an analog of tornadoes - play a key role in the dynamics of neutron stars: the densest objects in the universe on the verge of becoming black holes. Surprisingly, quantum vortices can be studied on earth with ultracold-atom experiments, operating almost a billion times colder than outer space. These experiments can be adjusted to mimic many aspects of neutron stars, and this project will enable them to be used as analog quantum computers to simulate turbulence in nuclear astrophysics. By transcending current limitations of classical computers, this will rapidly accelerate the progress of science, targeting the 40-year old mystery of pulsar glitches. This program combines two of the NSF's Big Ideas, advancing quantum simulations (Quantum Leap) to maximize the return on detector investment (Windows on the Universe). Pulsar glitches might even be heard with the next round of gravitational wave observations at the NSF LIGO facility, informing nuclear physics by providing insight into their microscopic nature. In addition to advancing basic science, this project will explore quantum dynamics with potential applications to quantum devices, and develop accessible programming models to help students and researchers more effectively utilize national investment in high-performance computing (HPC) to advance the pace of scientific discovery. Finally, a superfluid explorer application will be developed to help the public and students appreciate quantum behavior, and better understand the science at the core of the next quantum revolution.This project will deliver computationally efficient models that accurately describe dynamic quantum effects, including negative-mass hydrodynamics from dispersion relationships engineered with spin-orbit coupled Bose-Einstein condensates. Ultracold atom experiments explore a rich set of phenomena that will be used validate our theoretical techniques, then these techniques will be used to drive the discovery of new phenomena. Extensions of this theory to nuclear physics will ultimately be used to model superfluid vortex dynamics in neutron stars with the goal of understanding pulsar glitches - sudden increases in the spinning of neutron stars even though they continually lose angular momentum. This project will advance a broad range of fields, including atomic physics, condensed matter, non-linear optics, nuclear theory, and nuclear astrophysics. The research will result in publicly available codes for solving problems in quantum dynamics, presented in intuitive and interactive notebooks with video tutorials demonstrating how to use high-level programming languages to drive high-performance computers. These tools will significantly improve the infrastructure for research and education, educating researchers to effectively utilize medium to large scale computing resources for the advancement of science. Through this project, both undergraduate and graduate students will be trained with the analytical and high-performance computational skills to succeed in their future pursuits in academia, at national laboratories, and in industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子涡旋——类似于龙卷风——在中子星的动力学中发挥着关键作用:宇宙中密度最大的物体,濒临成为黑洞。令人惊讶的是,可以通过超冷原子实验在地球上研究量子涡旋,其运行温度几乎比外太空低十亿倍。这些实验可以调整以模仿中子星的许多方面,该项目将使它们能够用作模拟量子计算机来模拟核天体物理学中的湍流。通过超越经典计算机目前的局限性,这将迅速加速科学进步,解决脉冲星故障这个长达 40 年之久的谜团。该计划结合了 NSF 的两个重要理念,推进量子模拟(Quantum Leap),以最大限度地提高探测器投资回报(宇宙之窗)。脉冲星故障甚至可能会在 NSF LIGO 设施的下一轮引力波观测中被听到,通过深入了解其微观性质来为核物理学提供信息。除了推进基础科学之外,该项目还将探索量子动力学及其在量子设备中的潜在应用,并开发可访问的编程模型,以帮助学生和研究人员更有效地利用国家在高性能计算(HPC)方面的投资来推进科学发现的步伐。最后,将开发一个超流体探索器应用程序,以帮助公众和学生欣赏量子行为,并更好地理解下一次量子革命核心的科学。该项目将提供计算高效的模型,准确描述动态量子效应,包括负-利用自旋轨道耦合玻色-爱因斯坦凝聚体设计的色散关系来分析质量流体动力学。超冷原子实验探索了一系列丰富的现象,这些现象将用于验证我们的理论技术,然后这些技术将用于推动新现象的发现。该理论向核物理的扩展最终将用于模拟中子星中的超流体涡旋动力学,其目标是理解脉冲星故障——中子星的旋转突然增加,即使它们不断失去角动量。该项目将推进广泛的领域,包括原子物理学、凝聚态物质、非线性光学、核理论和核天体物理学。该研究将产生用于解决量子动力学问题的公开代码,这些代码以直观且交互式的笔记本形式呈现,并附有视频教程,演示如何使用高级编程语言来驱动高性能计算机。这些工具将显着改善研究和教育的基础设施,教育研究人员有效利用中型到大规模计算资源来促进科学进步。通过该项目,本科生和研究生都将接受分析和高性能计算技能的培训,以便在学术界、国家实验室和工业界取得成功。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atom Interferometric Imaging of Differential Potentials Using an Atom Laser
使用原子激光器对微分电势进行原子干涉成像
- DOI:10.1103/physrevlett.130.263402
- 发表时间:2023-06
- 期刊:
- 影响因子:8.6
- 作者:Mossman, M. E.;Corbin, Ryan A.;Forbes, Michael McNeil;Engels, P.
- 通讯作者:Engels, P.
Detecting entrainment in Fermi-Bose mixtures
检测费米-玻色混合物中的夹带
- DOI:10.1103/physreva.105.063315
- 发表时间:2022-06
- 期刊:
- 影响因子:2.9
- 作者:Hossain, Khalid;Gupta, Subhadeep;Forbes, Michael McNeil
- 通讯作者:Forbes, Michael McNeil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Forbes其他文献
Benders Decomposition with Delayed Disaggregation for the Active Passive Vehicle Routing Problem
主动被动车辆路径问题的延迟分解 Benders 分解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Yannik Rist;Christian Tilk;Michael Forbes - 通讯作者:
Michael Forbes
Augmentation of CFTR maturation by S-nitrosoglutathione reductase 1 2
S-亚硝基谷胱甘肽还原酶促进 CFTR 成熟 1 2
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Zaman;Victoria Sawczak;Atiya Zaidi;Maya Butler;Deric Bennett;Paulina;Getsy;Maryam Zeinomar;Zivi Greenberg;Michael Forbes;Shagufta Rehman;Vinod;Jyothikumar;Kimberly Deronde;A. Sattar;Laura A. Smith;Deborah A. Corey;Adam;Straub;F. Sun;L. Palmer;A. Periasamy;S. Randell;T. Kelley;S. Lewis;B. Gaston - 通讯作者:
B. Gaston
IN GOLF PUTTING Examining visual and attentional focus influences on golf putting performance using a dual-task paradigm
在高尔夫推杆中使用双任务范例检查视觉和注意力焦点对高尔夫推杆表现的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Michael Forbes - 通讯作者:
Michael Forbes
Optimal phylogenetic reconstruction of insertion and deletion events
插入和删除事件的最佳系统发育重建
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanjana Tule;G. Foley;Chongting Zhao;Michael Forbes;Mikael Bodén - 通讯作者:
Mikael Bodén
Michael Forbes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Forbes', 18)}}的其他基金
Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
- 批准号:
2309322 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
- 批准号:
2047310 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CRII: AF: Linear-Algebraic Pseudorandomness
CRII:AF:线性代数伪随机性
- 批准号:
1755921 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
AF: Small: Challenges in Unconditional Pseudorandomness for Boolean Computation
AF:小:布尔计算无条件伪随机性的挑战
- 批准号:
1814788 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
各向异性柔性覆层湍流边界层直接数值模拟研究
- 批准号:12362022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
托卡马克中快离子共振对ITG湍流抑制作用的模拟研究
- 批准号:12305248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可压缩湍流中惯性粒子的运动特性和机理的直接数值模拟研究
- 批准号:12302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含变形微液滴的可压缩湍流数值模拟与建模
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
托卡马克微观湍流和阿尔芬波相互作用长时间尺度行为及机理的模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
AGS-FIRP Track 2: Untangling the physics of aerosol activation, turbulence, and drizzle formation: Pi Chamber experiments and numerical simulation
AGS-FIRP 轨道 2:理清气溶胶活化、湍流和毛毛雨形成的物理原理:Pi 室实验和数值模拟
- 批准号:
2227012 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
- 批准号:
RGPIN-2022-05155 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
- 批准号:
RGPIN-2022-04720 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
- 批准号:
2138414 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
- 批准号:
RGPIN-2022-04720 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual