Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
基本信息
- 批准号:2012103
- 负责人:
- 金额:$ 36.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to pioneer new techniques for the mission planning and control of robotic systems that derive their propulsive energy either solely or primarily from renewable resources. Examples of renewably powered robotic systems include tumbleweed rovers for remote terrestrial exploration, solar powered aircraft for aerial observation, and sailing drones for oceanographic surface exploration. By relying on renewable resources for propulsion, such systems can explore hostile and remote regions that cannot be explored through traditional mobile robots due to range limitations, including the surfaces of distant planets, deep waters of the ocean, and the Arctic region. This research effort will focus on the creation and validation of fundamental tools for controlling renewably powered systems through a propulsive resource that varies stochastically in space and time, thereby necessitating a fundamentally new set of control tools relative to traditional mobile robots. The theoretical results from the research will be validated on a small fleet of sailing drones, to be deployed in inland waters. The research effort will be complemented with educational and outreach opportunities involving Autonomous Marine Systems, Inc., the Carolina Sailing Club, and North Carolina State University.Traditional mobile robotic systems can typically be characterized by very limited range but relatively predictable mobility, wherein the reachable domain of the robotic system (or team of robotic systems) can be characterized with a high degree of certainty at any given time. This research fundamentally reverses that paradigm, focusing on robotic systems with unlimited range but stochastic mobility. Due to the stochastic, spatiotemporal variation in the renewable resource, the application of traditional energy-aware control techniques on such systems will typically result in either ineffective or extremely conservative mission planning strategies. To address this challenge, this research project will pursue a hierarchical mission planning and control framework in which an upper-level mission planner prescribes preferred exploration directions based on statistical characterizations of the propulsive resource, and lower-level dynamic mobility optimizers will maximize expected mobility along preferred directions, taking into account the dynamics of each agent and the stochastic resource model. Gaussian Process modeling will be used to characterize the spatiotemporally evolving resource. Polynomial chaos approximations and stochastic response surface methods will be used to facilitate a receding horizon optimization of search directions at the upper level, whereas stochastic dynamic programming results will be used to extract probabilistically time-optimal waypoint following algorithms at the lower level. Theoretical performance limits will be analyzed in the context of statistical regret bounds. Mission planning and control algorithms will be validated in two settings: (i) a small fleet of instrumented sailing drones to be tested in inland waters and (ii) a larger-scale simulation study wherein the goal of the sailing drones is Gulf Stream resource assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是开创机器人系统任务规划和控制的新技术,这些机器人系统的推进能量单独或主要来自可再生资源。可再生动力机器人系统的例子包括用于远程陆地探索的风滚草漫游车、用于空中观测的太阳能飞机以及用于海洋表面探索的无人机。通过依靠可再生资源进行推进,此类系统可以探索传统移动机器人因范围限制而无法探索的敌对和偏远地区,包括遥远行星的表面、海洋深水和北极地区。这项研究工作将侧重于创建和验证通过在空间和时间上随机变化的推进资源来控制可再生能源系统的基本工具,从而需要一套相对于传统移动机器人而言全新的控制工具。该研究的理论结果将在部署在内陆水域的小型航行无人机上得到验证。这项研究工作将得到包括自主海洋系统公司、卡罗莱纳州帆船俱乐部和北卡罗来纳州立大学在内的教育和推广机会的补充。传统的移动机器人系统通常具有范围非常有限但相对可预测的移动性的特点,其中可到达的范围机器人系统(或机器人系统团队)的领域可以在任何给定时间以高度确定性进行表征。这项研究从根本上扭转了这一范式,重点关注具有无限范围但随机移动性的机器人系统。由于可再生资源的随机时空变化,在此类系统上应用传统的能源感知控制技术通常会导致任务规划策略无效或极其保守。为了应对这一挑战,该研究项目将采用分层任务规划和控制框架,其中上层任务规划器根据推进资源的统计特征规定首选探索方向,而下层动态机动性优化器将最大限度地提高预期机动性首选方向,考虑到每个代理的动态和随机资源模型。高斯过程建模将用于表征时空演变的资源。多项式混沌近似和随机响应面方法将用于促进上层搜索方向的后退地平线优化,而随机动态规划结果将用于提取下层算法的概率时间最优路径点。理论性能限制将在统计遗憾界限的背景下进行分析。任务规划和控制算法将在两种环境下进行验证:(i) 在内陆水域测试小型仪表航海无人机机队,以及 (ii) 更大规模的模拟研究,其中航海无人机的目标是湾流资源评估该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coverage-Maximizing Solar-Powered Autonomous Surface Vehicle Control for Persistent Gulf Stream Observation
覆盖范围最大化的太阳能自主地面车辆控制,用于持续的湾流观测
- DOI:10.23919/acc53348.2022.9867746
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Govindarajan, Kavin;Haydon, Ben;Mishra, Kirti;Vermillion, Chris
- 通讯作者:Vermillion, Chris
Dynamic Coverage Meets Regret: Unifying Two Control Performance Measures for Mobile Agents in Spatiotemporally Varying Environments
动态覆盖遇到遗憾:在时空变化的环境中统一移动代理的两种控制性能测量
- DOI:10.1109/cdc45484.2021.9682826
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Haydon, Ben;Mishra, Kirti D.;Keyantuo, Patrick;Panagou, Dimitra;Chow, Fotini;Moura, Scott;Vermillion, Chris
- 通讯作者:Vermillion, Chris
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Vermillion其他文献
Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
- DOI:
10.1109/tcst.2023.3328105 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:4.8
- 作者:
Benjamin Haydon;James Reed;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou - 通讯作者:
Dimitra Panagou
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion - 通讯作者:
Christopher Vermillion
Christopher Vermillion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Vermillion', 18)}}的其他基金
Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
- 批准号:
2321698 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
- 批准号:
1935879 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1914495 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1913735 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1913726 - 财政年份:2018
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
- 批准号:
1727779 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
- 批准号:
1711579 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
- 批准号:
1538369 - 财政年份:2015
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
- 批准号:
1453912 - 财政年份:2015
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
- 批准号:
1437296 - 财政年份:2014
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
相似国自然基金
创新使命对数字产品创新的驱动机制研究:意义建构视角
- 批准号:72302084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不忘初心:职业使命感的内涵结构、动态变化及激发机制研究
- 批准号:72272117
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
组织混合性、使命偏离与社会企业扩张路径研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会企业使命漂移机制研究:基于制度复杂性的视角
- 批准号:72072188
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
内化于心何以外显于行:创新使命的多层次意义建构及对企业突破性创新影响效应研究
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
2023 Focus Meeting of the Pacific Basin Consortium for Environment and Health
2023年太平洋盆地环境与健康联盟焦点会议
- 批准号:
10753652 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
19th International Conference of the Pacific Basin Consortium for Environment and Health
第十九届太平洋盆地环境与健康联盟国际会议
- 批准号:
10469074 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
Environmental Health in a Changing Climate: the 19th International Conference of the Pacific Basin Consortium for Environment and Health
气候变化中的环境健康:第十九届太平洋盆地环境与健康联盟国际会议
- 批准号:
10307011 - 财政年份:2021
- 资助金额:
$ 36.55万 - 项目类别:
Neurophysiological and transcriptomic predictors of chronic low back pain: towards precision pain management (NEAT Study)
慢性腰痛的神经生理学和转录组学预测因素:实现精准疼痛管理(NEAT 研究)
- 批准号:
10022521 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别: