Scalable Randomized Scheduling of Mobile Sensors with Observability Guarantees
具有可观测性保证的移动传感器的可扩展随机调度
基本信息
- 批准号:2030556
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Autonomous aerial, ground, and underwater robots have emerged as promising platforms for a myriad of sensing applications. Aerial drones can monitor natural calamities like tornadoes and forest fires, and underwater robots can detect harmful algal blooms and track invasive fish species. The information to be gathered is typically governed by some nonlinear dynamic processes. A natural question to ask is, given a limited number of mobile sensors, how should they be dynamically placed to best observe the quantity of interest, especially with limited energy while requiring the robots to remain connected? The space of possible sensor placements is vast and constraints on energy and connectivity add to the challenges. This project will develop efficient algorithms to schedule the mobile sensors under these constraints and evaluate their performance in tracking a moving target through field experiments. The interdisciplinary nature of this research will be integrated with outreach and educational activities to broaden participation of K-12 and undergraduate students, especially from underrepresented groups.The project combines the investigators’ complementary expertise in control, network theory and fast randomized computation as the project will result in a fresh perspective and a generalizable, principled framework for scalable scheduling of mobile sensors with observability guarantees. The project goals will be realized through four integrated research thrusts that span theoretical investigation, algorithmic development, and experimental validation. Thrust 1 focuses on integrating a Gramian-based nonlinear observability metric with randomized sampling for efficient computation of near-optimal sensor placements under sensing and communication uncertainty. Thrust 2 extends the framework to accommodate energy and connectivity constraints, where special emphasis will be on distributed approaches for computation. Motivated by the fish-tracking application, the theory and algorithms developed in Thrusts 1 and 2 will be validated experimentally with a fleet of autonomous surface vehicles tracking a moving acoustic tag. Thrust 3 of the project involves the development of the experimental testbed, including the robots and their associated models and controllers, while Thrust 4 evaluates the developed mobile sensor scheduling algorithms via both simulation and field experiments in Higgins Lake, Michigan.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自主空中,地面和水下机器人已成为多种灵敏度应用的承诺平台。空中无人机可以监测龙卷风和森林大火等自然灾害,水下机器人可以检测有害的藻类血液并追踪侵入性鱼类。要收集的信息通常由一些非线性动态过程控制。一个自然的问题是,鉴于数量有限的移动传感器,应该如何动态地放置它们以最佳观察兴趣的数量,尤其是在有限的能量的同时,在要求机器人保持连接的同时,它们是有限的?可能的传感器放置空间是巨大的,并且对能量和连通性的限制增加了挑战。该项目将开发有效的算法,以在这些约束下安排移动传感器,并评估其通过现场实验跟踪移动目标的性能。这项研究的跨学科性质将与外展和教育活动相结合,以扩大K-12和本科生的参与,尤其是从代表性不足的小组中。该项目结合了研究人员在控制,网络理论和快速随机计算方面的完整专业知识,因为该项目将在一个全新的角度和一般性的框架中,并确保了量表的范围,可确保量表的范围,并确保型号的全新框架。项目目标将通过跨越理论投资,算法开发和实验验证的四个综合研究推力来实现。推力1的重点是将基于Gramian的非线性观察度量与随机采样进行整合,以有效地计算感觉和通信不确定性下的近距离传感器位置。推力2扩展了框架以适应能量和连通性约束,其中将特别重点放在分布式计算方法上。在推力1和2中开发的理论和算法是由鱼类跟踪应用的促进的,将通过跟踪移动的声学标签的自动表面车辆进行实验验证。该项目的推力3涉及实验测试的开发,包括机器人及其相关的模型和控制器,而Throust 4通过模拟和密歇根州希金斯湖的模拟和现场实验评估了开发的移动传感器调度算法。该奖项颁发了NSF的法定任务,并通过评估了Intervisiation the Intellitial and Foundation and Foundation and Intfortial and Infceptial and Infcordial and Intfortial and Intfortial and Inthlit and Intfortial and Inthlit and Intfortial and Inthforiatial的支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Scenario Approach to Robust Simulation-based Path Planning
基于仿真的鲁棒路径规划的场景方法
- DOI:10.23919/acc53348.2022.9867194
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bopardikar, Shaunak D.;Srivastava, Vaibhav
- 通讯作者:Srivastava, Vaibhav
Optimal Control of Active Drifter Systems
主动漂移系统的优化控制
- DOI:10.1109/cdc51059.2022.9993037
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gaskell, Eric;Tan, Xiaobo
- 通讯作者:Tan, Xiaobo
Numerical and Topological Conditions for Sub-Optimal Distributed Kalman Filtering
次优分布式卡尔曼滤波的数值和拓扑条件
- DOI:10.1109/tcns.2022.3181795
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Ennasr, Osama;Tan, Xiaobo
- 通讯作者:Tan, Xiaobo
Incorporating Observability via Control Barrier Functions with Application to Range-based Target Tracking
- DOI:10.1109/aim46487.2021.9517467
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Demetris Coleman;S. Bopardikar;Xiaobo Tan
- 通讯作者:Demetris Coleman;S. Bopardikar;Xiaobo Tan
Competitive Perimeter Defense on a Line
- DOI:10.23919/acc50511.2021.9483308
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Shivam Bajaj;E. Torng;S. Bopardikar
- 通讯作者:Shivam Bajaj;E. Torng;S. Bopardikar
共 12 条
- 1
- 2
- 3
Shaunak Bopardikar的其他基金
CAREER: Characterizing Attack Resilience of Multi-agent Dynamical Systems with Applications to Connected Autonomous Vehicles
职业:表征多智能体动态系统的攻击弹性及其在联网自动驾驶汽车中的应用
- 批准号:22365372236537
- 财政年份:2023
- 资助金额:$ 36万$ 36万
- 项目类别:Continuing GrantContinuing Grant
SaTC: CORE: Small: Data-driven Attack and Defense Modeling for Cyber-physical Systems
SaTC:核心:小型:网络物理系统的数据驱动攻击和防御建模
- 批准号:21340762134076
- 财政年份:2022
- 资助金额:$ 36万$ 36万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
预测-决策闭环一体化框架下电氢碳多能流耦合钢铁园区的随机生产调度和网荷互动研究
- 批准号:52377121
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向算力网络的随机工作流泛在协同调度研究
- 批准号:62302095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自适应非均匀前瞻视窗的电网日内随机调度决策方法研究
- 批准号:52307150
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数据-机理-知识融合的随机场景电网前瞻调度智能决策研究
- 批准号:52377092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
随机环境下复杂产品装配的超启发式调度方法
- 批准号:52305533
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving glaucoma self-management with technology-supported counselors
通过技术支持的咨询师改善青光眼自我管理
- 批准号:91099279109927
- 财政年份:2016
- 资助金额:$ 36万$ 36万
- 项目类别:
Use of Predictive Modeling to Improve Operating Room Scheduling Efficiency
使用预测建模提高手术室调度效率
- 批准号:87825498782549
- 财政年份:2013
- 资助金额:$ 36万$ 36万
- 项目类别:
Use of Predictive Modeling to Improve Operating Room Scheduling Efficiency
使用预测建模提高手术室调度效率
- 批准号:85945718594571
- 财政年份:2013
- 资助金额:$ 36万$ 36万
- 项目类别:
CAREER: Scheduling and Resource Allocation in the Cloud using Graphical Models and Randomized Algorithms
职业:使用图形模型和随机算法在云中进行调度和资源分配
- 批准号:11500801150080
- 财政年份:2012
- 资助金额:$ 36万$ 36万
- 项目类别:Continuing GrantContinuing Grant
Motivational Interviewing: An Experiential Online Training Tool
动机访谈:体验式在线培训工具
- 批准号:81990738199073
- 财政年份:2011
- 资助金额:$ 36万$ 36万
- 项目类别: