RI: Small: Learning Resilient Autonomous Flight Behaviors by Exploiting Collision-tolerance

RI:小:通过利用碰撞容忍度来学习弹性自主飞行行为

基本信息

项目摘要

This project investigates the potential of a new class of aerial robots that exploit collision-tolerance to mitigate risks and challenges during autonomous flight. Modern autonomous unmanned aerial vehicles strive to avoid any possible collision with the environment, a goal which is often hard to achieve and even harder to guarantee. Looking at the animal kingdom, one can observe an alternative paradigm. Small flying insects for example often come in collision with the environment but this does not hinder them from continuing with their lives and tasks. They survive a collision with little to no problem. Inspired by this fact, this project aims to understand the interplay between collision-tolerance and autonomy for agile navigation. Redefining what constitutes “safe navigation” for a small aerial robot, a new class of resilient micro flyers will maximize agility in autonomous flight, while keeping collision risks and possible impacts of a collision below certain acceptable thresholds. This new type of resilient aerial robots will in turn be valuable in a set of real-world applications such as the inspection of hard to access, narrow and visually-degraded environments. This includes but is not limited to the exploration of underground facilities, accessing cargo tanks through manholes and more. In addition, this project strives to contribute into advanced university education and K12 outreach. The latter crucial goals are achieved by close connections between the envisioned research and university classes, and through synergies with established outreach mechanisms to teachers and K12 students in the State of Nevada. To meet these goals, this project builds on top of four research directions. First, it examines a set of alternative collision-tolerant designs for aerial robots by investigating the different advantages and disadvantages of rigid and compliant designs. Second, it aims to design a new “expert” motion planning strategy that explicitly models the risk of a collision and its effect in autonomous navigation. For the latter, the research team will also model the effect of collisions in the ability of the robot to reliably localize. Third, the project team will examine the potential of reinforcement learning methods in the framework of collision-tolerant autonomous flight. Given the hybrid nature of the dynamic phenomena governing collisions and the effect of collisions in the onboard localization functionality of a flying robot, the project envisions a set of contributions in new approaches for learning to navigate that mitigate localization uncertainty through collision resilience and have minimal computational requirements. Eventually, the project aims to facilitate a new class of resilient flying robotic systems capable of supporting multiple real-life applications such as those of industrial and underground inspection. At the same time it aims to introduce leading-edge research to both undergraduate and graduate education activities, alongside strengthening outreach efforts towards K12 students and their teachers.This project is jointly funded by the Robust Intelligence (RI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了新型空中机器人的潜力,该机器人利用碰撞耐受性来减轻自主飞行过程中的风险和挑战,现代自主无人机努力避免与环境发生任何可能的碰撞,而这一目标通常很难实现。更难保证的是,我们可以观察到另一种范例,例如小型飞行昆虫经常与环境发生碰撞,但这并不妨碍它们继续生活和完成任务。受此启发没有问题。事实上,该项目旨在了解碰撞耐受性和敏捷导航自主性之间的相互作用,重新定义小型空中机器人的“安全导航”,一种新型弹性微型飞行器将最大限度地提高自主飞行的敏捷性,同时保持碰撞风险。这种新型弹性空中机器人将在一系列现实应用中发挥重要作用,例如检查难以进入、狭窄和视觉退化的环境。不限于此外,该项目还致力于为先进的大学教育和 K12 推广做出贡献,后者的关键目标是通过设想的研究和大学课程之间的密切联系以及协同作用来实现的。为了实现这些目标,该项目建立在四个研究方向之上,首先,它通过研究不同的优势来研究一系列替代的空中机器人耐碰撞设计。和缺点其次,它的目标是设计一种新的“专家”运动规划策略,明确模拟碰撞风险及其对自主导航的影响。对于后者,研究团队还将模拟碰撞的影响。第三,考虑到控制碰撞的动态现象和机载碰撞影响的混合性质,项目团队将研究强化学习方法在耐碰撞自主飞行框架中的潜力。飞行机器人的定位功能该项目设想了一系列用于学习导航的新方法,通过碰撞弹性来减轻定位不确定性,并具有最小的计算要求,最终,该项目旨在促进能够支持多种现实应用程序的新型弹性飞行机器人系统。同时,它旨在将前沿研究引入本科生和研究生教育活动,同时加强对 K12 学生及其教师的推广工作。该项目由 Robust Intelligence (RI) 共同资助。 )和既定的刺激计划竞争性研究 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Launching a Micro–Scout UAV from a Mobile Robotic Manipulator Arm
从移动机器人机械臂发射微型侦察无人机
A Multi-VTOL Modular Aspect Ratio Reconfigurable Aerial Robot
多垂直起降模块化展弦比可重构空中机器人
Solar Energy Harvesting for a Land-to-Recharge Tiltrotor Micro Aerial Vehicle
用于陆地充电的倾转旋翼微型飞行器的太阳能收集
  • DOI:
    10.1109/aero53065.2022.9843249
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlson, Stephen J.;Papachristos, Christos
  • 通讯作者:
    Papachristos, Christos
The Gannet Solar–VTOL: An Amphibious Migratory UAV for Long–Term Autonomous Missions
Gannet Solar – VTOL:用于长期自主任务的两栖迁徙无人机
Mobile Manipulation-based Deployment of Micro Aerial Robot Scouts through Constricted Aperture-like Ingress Points
通过类似收缩孔径的入口点进行基于移动操纵的微型空中机器人侦察兵部署
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Papachristos其他文献

UAV-based Foliage Plant Species Classification for Semantic Characterization of Pre-Fire Landscapes
基于无人机的观叶植物物种分类,用于火灾前景观的语义表征
Optimizing UAV Network Efficiency: Integrative Strategies for Simultaneous Energy Management and Obstacle-Aware Routing
优化无人机网络效率:同步能源管理和障碍感知路由的综合策略
  • DOI:
    10.2514/6.2024-1166
  • 发表时间:
    2024-01-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Basiri;Dhananjay Tiwari;Christos Papachristos;Srinivasa M. Salapaka
  • 通讯作者:
    Srinivasa M. Salapaka
Hybrid Locomotive Behaviors for an Amphibious Fixed-Wing / VTOL Tiltrotor UAV
两栖固定翼/垂直起降倾转无人机的混合机车行为

Christos Papachristos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于自编码深度学习的空心涡轮叶盘高维小失效可靠性设计优化研究
  • 批准号:
    12302156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
  • 批准号:
    62301507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的小样本侧扫声纳小目标探测
  • 批准号:
    42374050
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
  • 批准号:
    62372375
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
  • 批准号:
    82371994
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
  • 批准号:
    2334461
  • 财政年份:
    2024
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2334936
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
  • 批准号:
    2315396
  • 财政年份:
    2023
  • 资助金额:
    $ 38.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了