III: Small: Collaborative Research: Study of Neural Architectural Components in Physics-Informed Deep Neural Networks for Extreme Flood Prediction
III:小型:协作研究:用于极端洪水预测的物理信息深度神经网络中的神经架构组件研究
基本信息
- 批准号:2008202
- 负责人:
- 金额:$ 29.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding our physical world is clearly critical and beneficial to human society, which has become a central focus and challenge in many areas of science and engineering for centuries. This project will develop machine learning-based techniques to model complex atmospheric systems (from weather to climate). Atmospheric system models can approximate atmospheric flow and predict sequence of extreme precipitation events including flooding. Flooding is one the most deadly and costly natural hazards in the world. Mounting losses from catastrophic floods are driving an intense effort to increase preparedness and improve response to disastrous flood events by providing early warnings. Findings in this project will help decision makers better determine the need for and outcomes of particular policy actions. For example, a 10-15 day lead time in flood prediction will allow significant changes in the way reservoir operation rules are executed to minimize the impact of flood events. Moreover, this project will provide undergraduate and graduate students with valuable research and training opportunities, encourage minority and woman participation in science and engineering, and have a broad and sustainable impact on Computer Science curricula and courseware development. Many physical systems can be described by a set of governing partial differential equations. However, these underlying governing partial differential equations are often coupled and nonlinear, do not have tractable analytical solutions, and need numerical approximations that are highly sensitive to initial and boundary conditions. This project synthesizes current understanding of physical systems with novel neural architectures to develop deep neural network models that can improve interpretation, generalization and prediction of complex physical system models. To achieve this goal, this project focuses on three interrelated research activities: (1) developing a library of neural architectural components to build modular neural network models; (2) testing neural architectural component based deep learning approach for flood prediction; and (3) building physics inspired deep learning models for better interpretation and prediction. This project investigates a new approach of developing and using basic neural architectural components to build large physics-informed deep neural networks. The modularity-based approach on study of neural architectures is critically important to enhance understanding and interpretability of deep learning models and has broad applications in multiple scientific domains. From scientific perspective, it will provide a new benchmark on the efficacy of using neural architectural components to build physics-informed deep neural network models and quantify achievable predictability limits for a class of precipitation and flood events by combining strengths of partial differential equation based numerical weather prediction models and recent advances in deep learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解我们的物理世界显然对人类社会至关重要且有益,几个世纪以来,这已成为科学和工程许多领域的中心焦点和挑战。该项目将开发基于机器学习的技术来模拟复杂的大气系统(从天气到气候)。大气系统模型可以近似大气流量并预测包括洪水在内的极端降水事件的序列。洪水是世界上最致命和代价最高的自然灾害之一。灾难性洪水造成的损失不断增加,促使人们大力加强准备工作,并通过提供早期预警来改善对灾难性洪水事件的响应。该项目的研究结果将帮助决策者更好地确定特定政策行动的需求和结果。例如,洪水预测提前 10-15 天将允许水库运行规则的执行方式发生重大变化,以最大限度地减少洪水事件的影响。此外,该项目将为本科生和研究生提供宝贵的研究和培训机会,鼓励少数族裔和女性参与科学和工程,并对计算机科学课程和课件开发产生广泛和可持续的影响。许多物理系统可以通过一组控制偏微分方程来描述。然而,这些基础控制偏微分方程通常是耦合的和非线性的,没有易于处理的解析解,并且需要对初始条件和边界条件高度敏感的数值近似。该项目综合了当前对物理系统的理解与新颖的神经架构,以开发深度神经网络模型,可以改善复杂物理系统模型的解释、泛化和预测。为了实现这一目标,该项目重点开展三项相互关联的研究活动:(1)开发神经架构组件库以构建模块化神经网络模型; (2) 测试基于神经架构组件的洪水预测深度学习方法; (3) 构建受物理学启发的深度学习模型,以更好地解释和预测。该项目研究了一种开发和使用基本神经架构组件来构建大型物理知识深度神经网络的新方法。基于模块化的神经架构研究方法对于增强深度学习模型的理解和可解释性至关重要,并且在多个科学领域具有广泛的应用。从科学的角度来看,它将为使用神经架构组件构建基于物理的深度神经网络模型的有效性提供新的基准,并通过结合基于偏微分方程的数值天气的优势来量化一类降水和洪水事件的可实现的可预测性限制预测模型和深度学习的最新进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Widening the Time Horizon: Predicting the Long-Term Behavior of Chaotic Systems
拓宽时间范围:预测混沌系统的长期行为
- DOI:10.1109/icdm54844.2022.00094
- 发表时间:2022-11-01
- 期刊:
- 影响因子:0
- 作者:Yong Zhuang;Matthew Almeida;Wei Ding;Patrick D Flynn;S. Islam;Ping Chen
- 通讯作者:Ping Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Chen其他文献
Prussian blue analogue-derived ZnOCo@nitrogen-depleted g-C3N4(ND-CN) for lightweight and efficient electromagnetic wave absorption
普鲁士蓝类似物衍生的 ZnOCo@贫氮 g-C3N4(ND-CN),用于轻质高效的电磁波吸收
- DOI:
10.1016/j.jallcom.2024.174166 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:6.2
- 作者:
Chengyong Ping;Xiaoyu Zhu;Ruiqi Wang;Yuxiang Jin;Ping Chen - 通讯作者:
Ping Chen
An Efficient Isoelectric Focusing of Microcolumn Array Chip for Screening of Adult Beta-Thalassemia.
用于筛查成人β地中海贫血的高效等电聚焦微柱阵列芯片。
- DOI:
10.1016/j.cca.2022.10.021 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:0
- 作者:
Genhan Zha;X. Xiao;Youli Tian;Hengying Zhu;Ping Chen;Qiang Zhang;Changjie Yu;Honggen Li;Yu;Chengxi Cao - 通讯作者:
Chengxi Cao
Effects of different H+ sources on formation of J aggregation of cyanine dye
不同H源对花青染料J聚集体形成的影响
- DOI:
10.1179/174313106x106296 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:0
- 作者:
C. Sun;S. Zhou;Ping Chen - 通讯作者:
Ping Chen
Investigation on the evaluation method and influencing factors of cross-scale mechanical properties of shale based on indentation experiment
基于压痕实验的页岩跨尺度力学特性评价方法及影响因素研究
- DOI:
10.1016/j.petrol.2021.109509 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:0
- 作者:
G. Dong;Ping Chen;Jianhong Fu;Zhangxin Chen - 通讯作者:
Zhangxin Chen
Improved kinetics of the Mg(NH2)2–2LiH system by addition of lithium halides
通过添加卤化锂改善 Mg(NH2)2−2LiH 体系的动力学
- DOI:
10.1039/c4ra02864c - 发表时间:
2014-07-24 - 期刊:
- 影响因子:3.9
- 作者:
Hujun Cao;Han Wang;Teng He;Guotao Wu;Zhitao Xiong;J. Qiu;Ping Chen - 通讯作者:
Ping Chen
Ping Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Chen', 18)}}的其他基金
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334665 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
III: Small: EAGER: Representation Learning of Connotation and Denotation Knowledge for Atomic Information Units
III:小:EAGER:原子信息单元的内涵和外延知识的表示学习
- 批准号:
1914489 - 财政年份:2019
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Supporting U.S.-Based Students to Participate in the 2018 IEEE International Conference on Data Mining (ICDM 2018)
支持美国学生参加2018年IEEE数据挖掘国际会议(ICDM 2018)
- 批准号:
1836469 - 财政年份:2018
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
EAGER: Advanced Machine Learning Techniques to Discover Disease Subtypes in Cancer
EAGER:先进的机器学习技术发现癌症疾病亚型
- 批准号:
1743010 - 财政年份:2017
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
EAGER: Advanced Machine Learning Techniques to Discover Disease Subtypes in Cancer
EAGER:先进的机器学习技术发现癌症疾病亚型
- 批准号:
1743010 - 财政年份:2017
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Project: Enriching Security Curricula and Enhancing Awareness of Security in Computer Science and Beyond
合作项目:丰富安全课程并增强计算机科学及其他领域的安全意识
- 批准号:
1423915 - 财政年份:2014
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Project: Enriching Security Curricula and Enhancing Awareness of Security in Computer Science and Beyond
合作项目:丰富安全课程并增强计算机科学及其他领域的安全意识
- 批准号:
1241661 - 财政年份:2012
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
REU Site: Research Experiences in Algorithm Design and Analysis for Students in Undergraduate Institutions
REU网站:本科院校学生算法设计与分析研究经验
- 批准号:
0851984 - 财政年份:2009
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: An Interactive Undergraduate Data Mining Course with Industrial-Strength Projects
协作研究:具有工业强度项目的交互式本科数据挖掘课程
- 批准号:
0737408 - 财政年份:2008
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: Module-Based Computer Security Courses and Laboratory for Small and Medium Sized Universities
合作研究:中小型大学基于模块的计算机安全课程和实验室
- 批准号:
0311385 - 财政年份:2003
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant