CIF: AF: Small: A Perturbed Markov Chains Approach to Studying Centrality, Mixing and Reinforcement Learning

CIF:AF:小:研究中心性、混合和强化学习的扰动马尔可夫链方法

基本信息

项目摘要

By their key role in facilitating many modern innovations such as Internet search via the PageRank algorithm or enabling robot movement using reinforcement learning, Markov chains are an important and versatile modeling plus analysis tool. Further examples of applications of Markov chains include algorithms in recommendation engines, simulation of complex systems using Monte-Carlo methods, inference such as community detection in social networks using random walks, and in analyzing configurations for complex systems, such as extent of opinion spread in social networks. The goal of this project is to develop new foundational results on Markov chains using perturbations of them that are easier to analyze and to simulate, with the end result being both a better understanding of the original Markov chain and the development of novel and efficient algorithms for applications, such as in reinforcement learning and other artificial-intelligence paradigms. The project activities center around the development of mathematical tools to analyze key properties such as convergence to the stationary distribution and mixing of Markov chains using their perturbations, and the use these theoretical advances to develop novel estimation algorithms with provable performance guarantees for PageRank estimation and for reinforcement learning. The specific goals are divided into three thrusts. The first will study properties that are preserved in the perturbed chain from the original chain, and any accompanying implications on inference and optimization problems that Markov chains are used for. The second will study the implications of the general results from the first thrust on the PageRank Markov chain along with Personalized PageRank Markov chains, with the emphasis on accurate but low-complexity estimation. Drawing connections between PageRank estimation and reinforcement learning, the third thrust will develop efficient policy-evaluation and policy-iteration methods for general discounted-cost problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
马尔可夫链在促进许多现代创新(例如通过 PageRank 算法进行互联网搜索或使用强化学习实现机器人运动)方面发挥着关键作用,是一种重要且多功能的建模和分析工具。马尔可夫链应用的更多示例包括推荐引擎中的算法、使用蒙特卡罗方法模拟复杂系统、使用随机游走的社交网络中的社区检测等推理,以及分析复杂系统的配置,例如意见传播的程度。社交网络。该项目的目标是利用马尔可夫链的扰动开发新的基础结果,这些结果更容易分析和模拟,最终结果是更好地理解原始马尔可夫链,并开发新颖有效的算法应用,例如强化学习和其他人工智能范例。该项目活动的中心是开发数学工具来分析关键属性,例如收敛到平稳分布和使用扰动混合马尔可夫链,并利用这些理论进展来开发新颖的估计算法,并为 PageRank 估计和强化学习。具体目标分为三个重点。第一个将研究原始链中扰动链中保留的属性,以及对马尔可夫链所用于的推理和优化问题的任何附带影响。第二个部分将研究第一个推动力对 PageRank 马尔可夫链以及个性化 PageRank 马尔可夫链的一般结果的影响,重点是准确但低复杂性的估计。第三个重点是在 PageRank 估计和强化学习之间建立联系,为一般折扣成本问题开发有效的政策评估和政策迭代方法。该奖项反映了 NSF 的法定使命,并被认为值得通过使用基金会的智力价值进行评估来支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Strong Duality Result for Cooperative Decentralized Constrained POMDPs
合作分散约束 POMDP 的强对偶结果
On the Benefits of Being Constrained When Receiving Signals
关于接收信号时受到约束的好处
Common Information based Approximate State Representations in Multi-Agent Reinforcement Learning
多智能体强化学习中基于公共信息的近似状态表示
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kao, Hsu;Subramanian;Vijay
  • 通讯作者:
    Vijay
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
Private Information Compression in Dynamic Games among Teams
团队动态博弈中的私有信息压缩
  • DOI:
    10.1109/cdc45484.2021.9683479
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tang, Dengwang;Tavafoghi, Hamidreza;Subramanian, Vijay;Nayyar, Ashutosh;Teneketzis, Demosthenis
  • 通讯作者:
    Teneketzis, Demosthenis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vijay Subramanian其他文献

A Multi-Agent View of Wireless Video Streaming with Delayed Client-Feedback
具有延迟客户端反馈的无线视频流的多代理视图
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
A Multi-Agent View of Wireless Video Streaming with Delayed Client-Feedback
具有延迟客户端反馈的无线视频流的多代理视图
Learning-Based Optimal Admission Control in a Single-Server Queuing System
单服务器排队系统中基于学习的最优准入控制
  • DOI:
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asaf Cohen;Vijay Subramanian;Yili Zhang
  • 通讯作者:
    Yili Zhang

Vijay Subramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vijay Subramanian', 18)}}的其他基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Empowering prosumers in electricity markets through market design and learning
合作研究:CPS:中:通过市场设计和学习为电力市场中的产消者赋权
  • 批准号:
    2038416
  • 财政年份:
    2020
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
  • 批准号:
    1955777
  • 财政年份:
    2020
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
The 6th Midwest Workshop on Control and Game Theory; Ann Arbor, Michigan
第六届中西部控制与博弈论研讨会;
  • 批准号:
    1738207
  • 财政年份:
    2017
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1516075
  • 财政年份:
    2014
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1538827
  • 财政年份:
    2014
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1443972
  • 财政年份:
    2014
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1516075
  • 财政年份:
    2014
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1219071
  • 财政年份:
    2012
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
  • 批准号:
    82303789
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
  • 批准号:
    32372727
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225575
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225576
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
CIF: AF: Small: Data Processing Against Synchronization Errors
CIF:AF:小:针对同步错误的数据处理
  • 批准号:
    2006455
  • 财政年份:
    2020
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了