CIF: Small: Deep Stochastic Geometry: A New Paradigm for Wireless Network Analysis and Design
CIF:小:深度随机几何:无线网络分析和设计的新范式
基本信息
- 批准号:2007498
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of wireless networks is rapidly extending towards applications with strict reliability and/or latency constraints. For example, in 5G cellular systems, standards not only specify average data rates but also the minimum rates that 95% of the users should be able to achieve. Meanwhile, for vehicular safety messaging or in manufacturing, extremely high reliability under strict latency constraints is required. In contrast to these developments, the theoretical tools available for wireless network analysis and design mostly focus on network-wide averages, which makes them unsuitable for these new applications. As a result, there is an urgent need to develop a theory for networks with strict performance constraints and guarantees. This project focuses on the development of such a theory, which will allow a sharp performance analysis and enable researchers and engineers in industry to characterize the user experience much more efficiently than by lengthy and expensive simulations. Accordingly, it is expected to have a significant impact on the design of future wireless systems. In addition, it will help train future generations of students in emerging wireless technologies and analytical techniques.In view of the increasing density, irregularity, and uncertainty in the locations of wireless transceivers, a probabilistic approach to modeling and analysis that includes the network geometry as its key ingredient is warranted. Stochastic geometry is the natural mathematical tool for modeling and analysis. However, its use has been largely restricted to the derivation of average performance metrics, which do not capture the disparity in the link or user performances nor incorporate reliability or latency constraints. To address these shortcomings, this project develops a new theoretical framework, called deep stochastic geometry, that focuses on spatial distributions rather than merely averages. Deep stochastic geometry enables a direct evaluation of the performance of user or link percentiles and the performance under constraints. As such, it is a theory of guaranteed performance, in contrast to the existing theory of average performance. At the heart of the new theory are so-called meta distributions, which are distributions of conditional distributions (given the network geometry). Meta distributions naturally emerge when the different sources of randomness in a network are separated according to their time scales. The specific research activities include the development of efficient numerical methods and simulation techniques to calculate meta distributions, finding effective approximation techniques, the extension of meta distributions to joint distributions, and, finally, the combination of multiple metrics into a comprehensive approach to characterize and optimize network performance under constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线网络的使用正在迅速扩展到具有严格可靠性和/或延迟限制的应用程序。例如,在 5G 蜂窝系统中,标准不仅规定了平均数据速率,还规定了 95% 用户应能够达到的最低速率。同时,对于车辆安全消息传递或制造而言,需要在严格的延迟限制下实现极高的可靠性。与这些发展相反,可用于无线网络分析和设计的理论工具主要关注网络范围内的平均值,这使得它们不适合这些新应用。因此,迫切需要开发一种具有严格性能约束和保证的网络理论。该项目专注于开发这样一种理论,该理论将允许进行敏锐的性能分析,并使工业界的研究人员和工程师能够比冗长且昂贵的模拟更有效地描述用户体验。因此,预计它将对未来无线系统的设计产生重大影响。此外,它将有助于培训未来几代学生的新兴无线技术和分析技术。鉴于无线收发器位置的密度不断增加、不规则性和不确定性,采用概率方法进行建模和分析,其中包括网络几何形状它的关键成分是有保证的。 随机几何是用于建模和分析的天然数学工具。然而,它的使用在很大程度上仅限于平均性能指标的推导,这些指标不能捕获链路或用户性能的差异,也不能纳入可靠性或延迟限制。为了解决这些缺点,该项目开发了一种新的理论框架,称为深度随机几何,该框架关注空间分布而不仅仅是平均值。深度随机几何可以直接评估用户或链接百分位数的性能以及约束下的性能。因此,它是一种保证绩效的理论,与现有的平均绩效理论相反。新理论的核心是所谓的元分布,它是条件分布的分布(给定网络几何形状)。当网络中不同的随机源根据时间尺度分开时,元分布自然会出现。具体的研究活动包括开发有效的数值方法和模拟技术来计算元分布,寻找有效的近似技术,将元分布扩展到联合分布,最后将多个指标组合成一种综合方法来表征和优化该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic Geometry Analysis of Spatial-Temporal Performance in Wireless Networks: A Tutorial
无线网络时空性能的随机几何分析:教程
- DOI:10.1109/comst.2021.3104581
- 发表时间:2021-02-01
- 期刊:
- 影响因子:0
- 作者:Xiao Lu;M. Salehi;M. Haenggi;E. Hossain;Hai Jiang
- 通讯作者:Hai Jiang
Meta Distributions–Part 1: Definition and Examples
元分布 - 第 1 部分:定义和示例
- DOI:10.1109/lcomm.2021.3069662
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Haenggi; Martin
- 通讯作者:Martin
Joint Spatial-Propagation Modeling of Cellular Networks Based on the Directional Radii of Poisson Voronoi Cells
基于泊松沃罗诺伊单元方向半径的蜂窝网络联合空间传播建模
- DOI:10.1109/twc.2020.3048646
- 发表时间:2021-05
- 期刊:
- 影响因子:10.4
- 作者:Feng, Ke;Haenggi, Martin
- 通讯作者:Haenggi, Martin
The SINR Meta Distribution in Poisson Cellular Networks
泊松蜂窝网络中的 SINR 元分布
- DOI:10.1109/lwc.2021.3068321
- 发表时间:2021-04
- 期刊:
- 影响因子:6.3
- 作者:Feng, Ke;Haenggi, Martin
- 通讯作者:Haenggi, Martin
Cox Models for Vehicular Networks: SIR Performance and Equivalence
车辆网络的 Cox 模型:SIR 性能和等效性
- DOI:10.1109/twc.2020.3023914
- 发表时间:2021-01-01
- 期刊:
- 影响因子:10.4
- 作者:J. Jeyaraj;M. Haenggi
- 通讯作者:M. Haenggi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Haenggi其他文献
The SIR Meta Distribution in Poisson Cellular Networks with Base Station Cooperation
基站协作泊松蜂窝网络中的SIR元分布
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:8.3
- 作者:
Qimei Cui;Xinlei Yu;Yuanjie Wang;Martin Haenggi - 通讯作者:
Martin Haenggi
Scalable transmission over heterogeneous networks: a stochastic geometry analysis
异构网络上的可扩展传输:随机几何分析
- DOI:
10.1103/physrevd.80.072005 - 发表时间:
2017 - 期刊:
- 影响因子:6.8
- 作者:
Liang Wu;Yi Zhong;Wenyi Zhang;Martin Haenggi - 通讯作者:
Martin Haenggi
Vehicle Distributions in Large and Small Cities: Spatial Models and Applications
大小城市的车辆分布:空间模型与应用
- DOI:
10.1109/tvt.2018.2865679 - 发表时间:
2018 - 期刊:
- 影响因子:6.8
- 作者:
Qimei Cui;Ning Wang;Martin Haenggi - 通讯作者:
Martin Haenggi
A Tractable Model for Wirelessly Powered Networks With Energy Correlation
具有能量相关性的无线供电网络的易处理模型
- DOI:
10.1109/twc.2020.2996809 - 发表时间:
2020 - 期刊:
- 影响因子:10.4
- 作者:
Na Deng;Martin Haenggi - 通讯作者:
Martin Haenggi
Millimeter-Wave Device-to-Device Networks with Heterogeneous Antenna Arrays
具有异构天线阵列的毫米波设备到设备网络
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:8.3
- 作者:
Na Deng;Martin Haenggi;Yi Sun - 通讯作者:
Yi Sun
Martin Haenggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Haenggi', 18)}}的其他基金
CIF: Small:Toward a Stochastic Geometry for Cellular Systems
CIF:小:走向蜂窝系统的随机几何
- 批准号:
1525904 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Virtual Full-Duplex Wireless Networking
合作研究:虚拟全双工无线网络
- 批准号:
1231806 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small:Interference Engineering in Wireless Systems
CIF:小型:无线系统中的干扰工程
- 批准号:
1216407 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: Theory and Practice of Coooperative Wireless Networks
NeTS:小型:协作无线网络的理论与实践
- 批准号:
1016742 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Geometric Analysis of Large Wireless Networks: Interference, Outage, and Delay
大型无线网络的几何分析:干扰、中断和延迟
- 批准号:
0728763 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Modeling and Managing Uncertainty in Wireless Ad Hoc and Sensor Networks
职业:无线自组网和传感器网络中的不确定性建模和管理
- 批准号:
0447869 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Applications of Random Geometric Graphs to Large Ad Hoc Wireless Networks
协作研究:随机几何图在大型自组无线网络中的应用
- 批准号:
0505624 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SENSORS: Theory and Practice of Sensor Network Architectures
传感器:传感器网络架构的理论与实践
- 批准号:
0329766 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活体自组装超小下转换纳米颗粒用于肿瘤深组织的近红外二区成像
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2型小胶质细胞源外泌体在深低温低流量术后脑损伤中的作用及机制研究
- 批准号:82000303
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
仅用光学序列图像的深空小天体探测全程自主相对导航方法及实验技术
- 批准号:U20B2055
- 批准年份:2020
- 资助金额:258 万元
- 项目类别:联合基金项目
丙泊酚深麻醉保护术后认知功能的小胶质细胞机制
- 批准号:81671076
- 批准年份:2016
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
CIF: Small: MoDL: Interpreting Deep-Learned Error-Correcting Codes
CIF:小型:MoDL:解释深度学习纠错码
- 批准号:
2240532 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2240708 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning
CIF:小:私人协作深度学习的深度随机性
- 批准号:
2215088 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant