CHS: Small: Towards Usability in Robotic Assistance: A Formalism for Robot-Assisted Feeding while Adjusting to User Preferences

CHS:小:迈向机器人辅助的可用性:机器人辅助喂养的形式主义,同时根据用户偏好进行调整

基本信息

  • 批准号:
    2007011
  • 负责人:
  • 金额:
    $ 49.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Nearly 56.7 million (18.7%) of the non-institutionalized US population had a disability in 2010. Among them, about 12.3 million needed assistance with one or more activities of daily living (ADLs), such as feeding, bathing, or dressing. Robots have the potential to help with these activities of daily living but every user is different and they have diverse needs and preferences. For long-term care, it is essential that such an assistive system can adapt to diverse situations and user preferences. This project focuses on the feeding activity and is based on this central tenet that by leveraging user feedback and contexts from previous feeding attempts, a robot should be able to learn online how to adapt to new food items, user preferences, and environments. Through improved access to independent living, the results of this project can positively impact millions of people worldwide. The long-term promise of this research is to have robots in society that can seamlessly and fluently perform complex manipulation tasks in cluttered, complex, and dynamic human environments in real homes.This project formalizes robot-assisted feeding using a general framework based on contextual bandits that allows directly optimizing for user preferences online. The online contextual bandit framework applied to acquiring and transferring food items provides the foundation to leverage user feedback to benchmark, learn, and develop methods for a natural dining experience, and exploring different contexts for generalizing bite acquisition. The models directly optimize for the user experience through user feedback, and adapt to a range of social and environmental factors with the intelligent use of embedded sensing. The project explores solutions which balance the trade-off between high quality but costly expert assistance and cheaper learned solutions in the form of a shared-autonomy system. Critical issues include the diversity of user preferences both temporally and ethnographically, designing for the experience across the entire learning procedure, and processing high-dimensional contextual information. The tangible result will be an intelligent assistive feeding robot whose performance can generalize to different activities and adapt to user preferences. An intelligent assistive feeding robot that relies on user feedback and rich sensor information will advance integrating complex user experiences and social environments into a coherent learning robotic system. Contextual bandits, a highly optimized generalization of multiple hypothesis testing, have broad potential in human-robotic, and human-AI systems in general to efficiently adapt to specific user needs in real time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2010 年,近 5,670 万人 (18.7%) 的非收容美国人口患有残疾。其中,约 1,230 万人需要一项或多项日常生活活动 (ADL) 的帮助,例如进食、洗澡或穿衣。机器人有潜力帮助完成这些日常生活活动,但每个用户都是不同的,他们有不同的需求和偏好。对于长期护理来说,这样的辅助系统必须能够适应不同的情况和用户的偏好。该项目专注于喂食活动,并基于这样的中心原则:通过利用用户反馈和之前喂食尝试的背景,机器人应该能够在线学习如何适应新的食物、用户偏好和环境。通过改善独立生活的机会,该项目的结果可以对全世界数百万人产生积极影响。这项研究的长期承诺是让社会中的机器人能够在真实家庭中杂乱、复杂和动态的人类环境中无缝、流畅地执行复杂的操作任务。该项目使用基于情境的通用框架将机器人辅助喂养形式化。 bandits 允许直接在线优化用户偏好。用于获取和转移食物的在线上下文强盗框架为利用用户反馈来基准、学习和开发自然用餐体验的方法提供了基础,并探索不同的上下文以概括咬合获取。这些模型通过用户反馈直接优化用户体验,并通过智能使用嵌入式传感来适应一系列社会和环境因素。该项目探索了平衡高质量但昂贵的专家协助与共享自治系统形式的廉价学习解决方案之间的权衡的解决方案。关键问题包括用户偏好在时间和人种上的多样性、整个学习过程中的体验设计以及处理高维上下文信息。切实的结果将是一个智能辅助喂养机器人,其性能可以推广到不同的活动并适应用户的偏好。依赖用户反馈和丰富传感器信息的智能辅助喂养机器人将推动将复杂的用户体验和社交环境集成到连贯的学习机器人系统中。上下文强盗是多重假设检验的高度优化概括,在人类机器人和人类人工智能系统中具有广泛的潜力,可以有效地实时适应特定用户的需求。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Srinivasa其他文献

Siddhartha Srinivasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Srinivasa', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2024 Human-Robot Interaction Pioneers Workshop (HRI)
旅行:2024 年人机交互先锋研讨会 (HRI) 的 NSF 学生旅行补助金
  • 批准号:
    2414275
  • 财政年份:
    2024
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132848
  • 财政年份:
    2022
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1745561
  • 财政年份:
    2017
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1748582
  • 财政年份:
    2017
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1745561
  • 财政年份:
    2017
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1637748
  • 财政年份:
    2016
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
  • 批准号:
    1544797
  • 财政年份:
    2015
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: Addressing Clutter and Uncertainty for Robotic Manipulation in Human Environments
NRI-Small:协作研究:解决人类环境中机器人操作的混乱和不确定性
  • 批准号:
    1208388
  • 财政年份:
    2012
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant

相似国自然基金

TIM-4调控小胶质细胞向吞噬型转化促进蛛网膜下腔出血后血液清除的作用及机制
  • 批准号:
    82301485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR突变的肺腺癌向小细胞肺癌转变的分子机制及干预策略
  • 批准号:
    82341002
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
巨噬细胞A20调控小管上皮细胞胞葬在AKI向CKD转变中的作用机制探讨
  • 批准号:
    82270728
  • 批准年份:
    2022
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
小胶质细胞外泌体调控卒中后星形胶质细胞亚型向神经干细胞转化的机制研究
  • 批准号:
    82271320
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
小尺度场向电流时空分布特征及与沉降粒子关系的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
  • 批准号:
    2244651
  • 财政年份:
    2022
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: A Graph-Based Data Fusion Framework Towards Guiding A Hybrid Brain-Computer Interface
CHS:小型:协作研究:基于图的数据融合框架指导混合脑机接口
  • 批准号:
    2006012
  • 财政年份:
    2020
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: A Graph-Based Data Fusion Framework Towards Guiding A Hybrid Brain-Computer Interface
CHS:小型:协作研究:基于图的数据融合框架指导混合脑机接口
  • 批准号:
    2005957
  • 财政年份:
    2020
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CHS: Small: Towards Photorealistic Augmented and Virtual Reality Displays
CHS:小型:迈向逼真的增强和虚拟现实显示
  • 批准号:
    2008464
  • 财政年份:
    2020
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
  • 批准号:
    2016414
  • 财政年份:
    2019
  • 资助金额:
    $ 49.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了