CNS Core: Small: Low-Power Wide-Area Networks for Industrial Automation
CNS 核心:小型:用于工业自动化的低功耗广域网
基本信息
- 批准号:2006467
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The evolution of Internet of Things (IoT) is transforming the field of industrial automation including process control and smart manufacturing into an important class of Industrial IoT (IIoT). Today, wireless solutions for industrial automation are based on short-range wireless technologies (e.g., WirelessHART, ISA100). To cover a large area with numerous devices, they form multi-hop mesh networks at the expense of energy, cost, and complexity, posing a big challenge to support the scale and wide-area of today’s IIoT. For example, the East Texas oil-field extends over 74x8 square kilometers requiring tens of thousands of sensors for automated management. Also, in process industries, many silos, tanks, and plants are often positioned far from the center, at inconvenient locations in difficult terrain or offshore. Pipelines can be hundreds of miles long and pass through difficult terrains, making it difficult to monitor gas and chemical leaks in real-time. This project proposes to adopt the Low-Power Wide-Area Network (LPWAN) technologies for industrial automation. Due to long-range, LPWANs can be adopted without complex configuration and at a fraction of costs for wide-area IIoT applications, compared to multi-hop solutions. This project will develop theoretical foundations and systems for enabling industrial automation using LPWANs. Its important findings will be shared with the standards bodies and industries. The developed technologies will be made open-source.This project will particularly consider LoRa, a leading LPWAN technology. Adopting LoRa for industrial automation poses some evolutionary challenges. The fundamental building blocks of any industrial automation system are feedback control loops that largely rely on real-time communication. Due to severe energy-constraints, LoRa uses a simple media access control protocol that is unsuited for real-time communication. It needs to adopt low duty-cycling in several regions (e.g., Europe). In addition, to optimize performance, industrial automation needs a codesign of real-time scheduling and control. Such a codesign becomes specially challenging in LoRa because it is large-scale and has energy-limitations. This project will address these challenges and make the following contributions: (1) an autonomous real-time scheduling technique and analysis using the demand bound function theory for LoRa; (2) a scalable scheduling-control codesign that jointly and dynamically determines control input and sampling rates; (3) a highly energy-efficient codesign by maximizing the sleeping times of the devices through a combination of self-triggered and even-triggered control adopting state-aware communication; and (4) an evaluation of the results through experiments using industrial process control use-cases on a physical testbed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 的发展正在将过程控制和智能制造等工业自动化领域转变为工业物联网 (IIoT) 的重要类别。如今,工业自动化的无线解决方案基于短程无线技术(例如,无线技术)。 、WirelessHART、ISA100),为了覆盖大量设备的大面积,它们形成多跳网状网络,代价是能源、成本和复杂性,这对支持当今工业物联网的规模和广域提出了巨大的挑战。 。 例子,东德克萨斯油田面积超过 74x8 平方公里,需要数以万计的传感器进行自动化管理。此外,在流程工业中,许多筒仓、储罐和工厂通常远离中心,位于地形复杂或近海的不方便位置。管道可能长达数百英里并穿过复杂的地形,因此很难实时监控天然气和化学品泄漏。该项目建议采用低功耗广域网(LPWAN)技术进行工业自动化。与多跳解决方案相比,长距离、低功耗广域网无需复杂的配置即可采用,并且成本低廉,该项目将开发使用低功耗广域网实现工业自动化的理论基础和系统。开发的技术将开源。该项目将特别考虑 LoRa,这是一种领先的 LPWAN 技术,采用 LoRa 进行工业自动化会带来一些革命性的挑战。由于严格的能量限制,LoRa使用不适合实时通信的简单媒体访问控制协议,需要在多个区域采用低占空比。此外,为了优化性能,工业自动化需要实时调度和控制的协同设计,这种协同设计在 LoRa 中变得特别具有挑战性,因为它是大规模的并且具有能源限制。挑战并做出以下贡献:(1) 使用 LoRa 的需求约束函数理论的自主实时调度技术和分析;(2) 联合动态确定控制输入和采样率的可扩展调度控制代码; - 通过采用状态感知通信的自触发和偶触发控制相结合来最大化设备的休眠时间,从而实现高效的代码设计;(4) 通过在物理上使用工业过程控制用例进行实验来评估结果;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Distributed Real-time Scheduling System for Industrial Wireless Networks
工业无线网络分布式实时调度系统
- DOI:10.1145/3464429
- 发表时间:2021-07
- 期刊:
- 影响因子:2
- 作者:Modekurthy, Venkata P.;Saifullah, Abusayeed;Madria, Sanjay
- 通讯作者:Madria, Sanjay
LPWAN in the TV White Spaces: A Practical Implementation and Deployment Experiences
电视空白区中的 LPWAN:实际实施和部署经验
- DOI:10.1145/3447877
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Rahman, Mahbubur;Ismail, Dali;Modekurthy, Venkata P.;Saifullah, Abusayeed
- 通讯作者:Saifullah, Abusayeed
Low-Latency In-Band Integration of Multiple Low-Power Wide-Area Networks
多个低功耗广域网的低延迟带内集成
- DOI:10.1109/rtas52030.2021.00034
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Modekurthy, Venkata P.;Ismail, Dali;Rahman, Mahbubur;Saifullah, Abusayeed
- 通讯作者:Saifullah, Abusayeed
Long-Lived LoRa: Prolonging the Lifetime of a LoRa Network
长寿命 LoRa:延长 LoRa 网络的使用寿命
- DOI:10.1109/icnp49622.2020.9259375
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Fahmida, Sezana;Modekurthy, Venkata P;Rahman, Mahbubur;Saifullah, Abusayeed;Brocanelli, Marco
- 通讯作者:Brocanelli, Marco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abusayeed Saifullah其他文献
Demo Abstract: Implementing SNOW on Commercial Off-The-Shelf Devices
演示摘要:在商用现成设备上实现 SNOW
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Dali Ismail;Mahbubur Rahman;Abusayeed Saifullah - 通讯作者:
Abusayeed Saifullah
All Theses and Dissertations ( ETDs ) January 2011 Empirical Studies for Reliable Home Area Wireless Sensor Networks
所有论文 (ETD) 2011 年 1 月 可靠家庭区域无线传感器网络的实证研究
- DOI:
10.1007/978-981-13-2203-7_46 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Sha;Chenyang Lu;Yixin Chen;C. Gill;Gregory Hackmann;Chengjie Wu;Sisu Xi;Yong Fu;Bo Li;Abusayeed Saifullah - 通讯作者:
Abusayeed Saifullah
Challenge: Wireless Sensor Networking over White Spaces
挑战:空白区域的无线传感器网络
- DOI:
10.1016/j.envint.2018.09.028 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:11.8
- 作者:
Abusayeed Saifullah;Chenyang Lu;Jie;Ranveer Ch;ra;ra;S. Sankar - 通讯作者:
S. Sankar
Maximizing Network Lifetime of WirelessHART Networks under Graph Routing
在图路由下最大限度地延长 WirelessHART 网络的网络生命周期
- DOI:
10.1109/iotdi.2015.43 - 发表时间:
2016-04-04 - 期刊:
- 影响因子:0
- 作者:
Chengjie Wu;Dolvara Gunatilaka;Abusayeed Saifullah;M. Sha;P. Tiwari;Chenyang Lu;Yixin Chen - 通讯作者:
Yixin Chen
CapNet
凯普网络
- DOI:
10.1145/3278624 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:0
- 作者:
Abusayeed Saifullah;S. Sankar;Jie Liu;Chenyang Lu;Ranveer Ch;ra;ra;B. Priyantha - 通讯作者:
B. Priyantha
Abusayeed Saifullah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abusayeed Saifullah', 18)}}的其他基金
CNS Core: Small: Low-Power Wide-Area Networks for Industrial Automation
CNS 核心:小型:用于工业自动化的低功耗广域网
- 批准号:
2301757 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Parallel and Real-Time Multicore Scheduling for an Efficiently-Used Cache (PARSEC)
合作研究:CNS 核心:中:高效使用缓存的并行实时多核调度 (PARSEC)
- 批准号:
2306745 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
- 批准号:
2306486 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Parallel and Real-Time Multicore Scheduling for an Efficiently-Used Cache (PARSEC)
合作研究:CNS 核心:中:高效使用缓存的并行实时多核调度 (PARSEC)
- 批准号:
2211642 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Parallel and Real-Time Multicore Scheduling for an Efficiently-Used Cache (PARSEC)
合作研究:CNS 核心:中:高效使用缓存的并行实时多核调度 (PARSEC)
- 批准号:
2306745 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
- 批准号:
2306486 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
- 批准号:
2211523 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Low-Power Wide-Area Networks for Industrial Automation
CNS 核心:小型:用于工业自动化的低功耗广域网
- 批准号:
2211510 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
- 批准号:
1846126 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: NeTS: Towards the Design of a Large-Scale Wireless Sensor Network
CRII:NeTS:面向大规模无线传感器网络的设计
- 批准号:
1742985 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
- 批准号:
2400463 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant