SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene

SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化

基本信息

  • 批准号:
    2005905
  • 负责人:
  • 金额:
    $ 20.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

1434548 (Ierapetritou), 1434456 (Vlachos)The need to minimize anthropogenic CO2 emissions and our dependence on foreign fossil fuels has been a main driver for the discovery and development of renewable and sustainable production of fuels and chemicals from other sources. Toward this goal, non-edible lignocellulosic biomass (plant biomass composed of cellulose, hemicellulose, and lignin) is a promising renewable feedstock since it is abundant, does not directly compete with the food chain, can lead to nearly carbon-free processes with concomitant reduction in CO2 emissions, and contains the building block of chemicals and fuels, i.e., carbon. It has been estimated that the annual crude oil demands in the US are of the same order of magnitude as the potentially available quantities of lignocellulosic materials and the throughput of chemicals is significantly lower, compared to fuels, and can easily be met. The recent boom in shale gas reduces our dependence on foreign petroleum, but also reduces the cracking of naphtha and thus, the production of C3-C6 chemicals from fossil fuels. One such example is BTX (Benzene, Toluene, Xylenes). Among BTX constituents, p-xylene (pX) is of great interest since it is the foundation for terephthalic acid (a polymer precursor for PET bottles used for the vast majority of food and liquid containers) and has an annual global demand of ~35 million metric tons/yr in 2010. The consumption of PET is expected to increase by 4-5%/yr over the next five years. pX has a similar number of carbon atoms to the building blocks of lignocellulose, and thus, its renewable production is an appealing target and forms the basis of the case study of the proposed work. Penetration of biomass based chemicals into existing markets requires that their production is sustainable and cost competitive to that of the petrochemical counterparts. Economic analysis and life cycle analysis (LCA) are often conducted to evaluate new biomass-based processes. It is emphatically the case that such predictions (including our own work) are based on rudimentary information, e.g., overall yield, and as such, are very uncertain. Currently, catalysts, solvents, and separation schemes are by-and-large discovered by trial and error. This situation is reminiscent of the genesis of oil industry that was followed by a century of discovery to evolve to its current mature stage. In order to realize renewable routes in the foreseeable future, a paradigm shift in philosophy and strategy is necessary that leverages recent scientific advances and core capabilities. It is the thesis of this research that a symbiotic program between systems analysis and fundamental science can lead to knowledge-based discovery and rapid commercialization while advancing scientific frontiers. This grand challenge-based vision defines the intellectual merit of the proposed program.Intellectual Merit: To meet this grand challenge-based objective, a "hierarchical multiscale" program is planned, where systems analysis is informing the fundamental science of key processes and parameters, and the science team is performing experiments and simulations to collect this much needed knowledge to reduce systems uncertainty and render systems predictions reliable. In simple terms, the systems analysis focuses the space of scientific research and accelerates knowledge generation, where it makes sense to have, and the science in turn makes economic and life cycle analyses more reliable. The conversion of biomass-derived sugars to para-xylene has been selected as a representative case study. Broader Impact: The proposed work will have impact on the specific domain of catalytic kinetics, separation technology, systems analysis, and the overall goal of establishing a sustainable manufacturing route of valuable chemicals from lignocellulose. The introduction of renewable chemicals can have a major impact on US economic development and sustainability. Similar to petro-based refineries, process synthesis will unavoidably play a vital role in sustainable and cost-effective biorefineries. The hierarchical multiscale program proposed herein can also pave the way of future research efforts between disciplines toward accelerated discovery and genesis of knowledge where is most impactful. The results will be disseminated broadly through publications, lectures, and integration of research findings within the graduate and undergraduate curricula of the two institutions involved. Graduate students will be trained in interdisciplinary science, including catalysis, reaction engineering, separation sciences, and process systems engineering, by establishing a new way of thinking in the development of a sustainable chemical process. In addition, the PIs will broaden participation of students from underrepresented groups and provide an enriching experience to K-12 students through a variety of educational activities.
1434548 (Ierapetritou), 1434456 (Vlachos)最大限度地减少人为二氧化碳排放和我们对外国化石燃料的依赖的需求一直是发现和开发其他来源的可再生和可持续生产燃料和化学品的主要驱动力。为了实现这一目标,非食用木质纤维素生物质(由纤维素、半纤维素和木质素组成的植物生物质)是一种有前途的可再生原料,因为它丰富,不直接与食物链竞争,可以导致几乎无碳的过程,并伴随减少二氧化碳排放,并包含化学品和燃料的组成部分,即碳。据估计,美国每年的原油需求与木质纤维素材料的潜在可用量处于同一数量级,并且与燃料相比,化学品的吞吐量明显较低,并且很容易满足。最近页岩气的繁荣减少了我们对外国石油的依赖,同时也减少了石脑油的裂解,从而减少了从化石燃料生产 C3-C6 化学品的数量。 BTX(苯、甲苯、二甲苯)就是这样的一个例子。在 BTX 成分中,对二甲苯 (pX) 备受关注,因为它是对苯二甲酸(一种用于绝大多数食品和液体容器的 PET 瓶的聚合物前体)的基础,全球年需求量约为 3500 万美元2010 年,PET 的消费量预计将增长 4-5%/年。 pX 的碳原子数与木质纤维素的组成部分相似,因此,其可再生生产是一个有吸引力的目标,并构成了拟议工作案例研究的基础。生物质化学品要渗透到现有市场,要求其生产具有可持续性,并且与石化产品相比具有成本竞争力。通常进行经济分析和生命周期分析(LCA)来评估新的基于生物质的工艺。显然,此类预测(包括我们自己的工作)是基于基本信息,例如总体产量,因此非常不确定。目前,催化剂、溶剂和分离方案大体上是通过反复试验发现的。这种情况让人想起石油工业的起源,经过一个世纪的发现,发展到目前的成熟阶段。为了在可预见的未来实现可再生能源路线,有必要利用最新的科学进步和核心能力,在理念和战略上进行范式转变。这项研究的论点是,系统分析和基础科学之间的共生计划可以带来基于知识的发现和快速商业化,同时推进科学前沿。这一基于挑战的宏伟愿景定义了拟议计划的智力价值。智力价值:为了实现这一基于挑战的宏伟目标,计划了一个“分层多尺度”计划,其中系统分析为关键过程和参数的基础科学提供信息,科学团队正在进行实验和模拟,以收集急需的知识,以减少系统的不确定性并使系统预测可靠。简而言之,系统分析专注于科学研究空间并加速知识生成,而科学反过来又使经济和生命周期分析更加可靠。将生物质衍生的糖转化为对二甲苯已被选为代表性案例研究。更广泛的影响:拟议的工作将对催化动力学、分离技术、系统分析的特定领域以及建立从木质纤维素中可持续生产有价值化学品的总体目标产生影响。可再生化学品的引入可以对美国的经济发展和可持续性产生重大影响。与基于石油的炼油厂类似,工艺合成将不可避免地在可持续且具有成本效益的生物炼油厂中发挥至关重要的作用。本文提出的分层多尺度计划还可以为未来学科之间的研究工作铺平道路,以加速发现和产生最具影响力的知识。研究结果将通过出版物、讲座以及将研究成果整合到两个相关机构的研究生和本科生课程中来广泛传播。研究生将通过建立可持续化学过程开发的新思维方式,接受跨学科科学的培训,包括催化、反应工程、分离科学和过程系统工程。此外,PI 将扩大代表性不足群体学生的参与,并通过各种教育活动为 K-12 学生提供丰富的体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianthi Ierapetritou其他文献

Accelerating manufacturing for biomass conversionviaintegrated process and bench digitalization: a perspective
  • DOI:
    10.1039/d1re00560j
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sai Praneet Batchu;Borja Hernandez;Abhinav Malhotra;Hui Fang;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos
Ethylene production: process design, techno-economic and life-cycle assessments
  • DOI:
    10.1039/d3gc03858k
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Yuqiu Chen;Mi Jen Kuo;Raul Lobo;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution
  • DOI:
    10.1039/d1gc00841b
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Yung Wei Hsiao;Aikaterini Anastasopoulou;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos
One-step lignocellulose depolymerization and saccharification to high sugar yield and less condensed isolated lignin
  • DOI:
    10.1039/d0gc04119j
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Sunitha Sadula;Natalia Rodriguez Quiroz;Abhay Athaley;Elvis Osamudiamhen Ebikade;Marianthi Ierapetritou;Dionisios G. Vlachos;Basudeb Saha
  • 通讯作者:
    Basudeb Saha
Process intensified lauric acid self-ketonization and its economic and environmental impact on biolubricant base oil production
  • DOI:
    10.1039/d4gc01721h
  • 发表时间:
    2024-07
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Tejas Goculdas;Zhifei Yuliu;Sunitha Sadula;Weiqing Zheng;Basudeb Saha;Arvind Nanduri;Marianthi Ierapetritou;Dionisios G. Vlachos
  • 通讯作者:
    Dionisios G. Vlachos

Marianthi Ierapetritou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianthi Ierapetritou', 18)}}的其他基金

FMRG: Eco: A Systems-Enabled Paradigm Shift for Modular Sustainable Chemical Manufacturing
FMRG:Eco:系统支持的模块化可持续化学制造范式转变
  • 批准号:
    2134471
  • 财政年份:
    2022
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Supply Chain Decision Making Framework Considering Uncertainty
考虑不确定性的供应链决策框架
  • 批准号:
    2217472
  • 财政年份:
    2022
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Advanced Modeling and Information Management in Pharmaceutical Manufacturing
EAGER:网络制造:药品制造中的高级建模和信息管理
  • 批准号:
    1547171
  • 财政年份:
    2015
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    1434548
  • 财政年份:
    2014
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Continuing Grant
Workshop on Process Intensification September 30-October 1, 2014, Arlington, VA
过程强化研讨会 2014 年 9 月 30 日至 10 月 1 日,弗吉尼亚州阿灵顿
  • 批准号:
    1450788
  • 财政年份:
    2014
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Integration of scheduling and control using closed loop implementation
使用闭环实现集成调度和控制
  • 批准号:
    1159244
  • 财政年份:
    2012
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Continuing Grant
Innovative methodologies for integrated planning and scheduling and industrial applications
集成规划和调度以及工业应用的创新方法
  • 批准号:
    0966861
  • 财政年份:
    2010
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Commercializing of Continuous Pharmaceutical Manufacturing Technology
连续药物制造技术的商业化
  • 批准号:
    0951845
  • 财政年份:
    2009
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Systematic Mathematical Strategies for Stochastic Modeling and Uncertainty in Production Planning and Scheduling
生产计划和调度中随机建模和不确定性的系统数学策略
  • 批准号:
    0625515
  • 财政年份:
    2006
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Travel Grant: FOCAPO 2008: Multi-Scale Integration of R&D, Manufacturing, and Optimization for Enterprise-Wide Operations
旅行补助金:FOCAPO 2008:R 的多尺度整合
  • 批准号:
    0638947
  • 财政年份:
    2006
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803677
  • 财政年份:
    2018
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了