Geometric Langlands Correspondence: Further Directions
几何朗兰兹对应:进一步的方向
基本信息
- 批准号:2005475
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Langlands Program is a mathematical framework that unifies questions in many different areas of mathematics, especially number theory and representation theory, in a web of deep and as yet only partially understood connections between number theory, representation theory, geometry, and mathematical physics. The classical Langlands program has been studied for more than fifty years, and has found significant applications to solving classical Diophantine equations, such as the solution of Fermat's last theorem. The geometric Langlands program, which is relatively new, is under rapid development as it is also connected with other subjects such as geometry and physics, from where one can draw intuition. In the geometric Langlands program, the number fields in the classical Langlands program are replaced by curves and their function fields, and the web of connections in number theory is replaced by concisely formulated equivalences, or correspondences. This project will extend and develop geometric Langlands correspondences in different settings and provide research training opportunities for graduate students.In more detail, one project will establish the Fundamental Local Equivalence, which is an equivalence between the Whittaker category of the affine Grassmannian for a reductive group and the Kazhdan-Lusztig category for its Langlands dual, as factorization categories. This equivalence could be considered as the starting point for the local geometric Langlands program. The project will establish the required equivalence by equating both sides to a combinatorial object that is directly expressible in terms of the root data and the quantum parameter (the so-called factorization algebra Omega). Another project will directly relate the geometric and classical Langlands theories (in the case of function fields) by realizing the space of automorphic functions as the categorical trace of the Frobenius on the category of automorphic sheaves with nilpotent singular support. In the process of doing so, one naturally re-derives V. Lafforgue's decomposition of the space of automorphic functions over the course moduli space of Langlands parameters via shtukas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
朗兰兹纲领是一个数学框架,它将许多不同数学领域的问题统一起来,特别是数论和表示论,将数论、表示论、几何和数学物理之间的深刻且迄今为止仅部分理解的联系联系起来。经典的朗兰兹纲领已经被研究了五十多年,并且在求解经典丢番图方程方面找到了重要的应用,例如费马大定理的求解。几何朗兰兹程序相对较新,正在快速发展,因为它还与其他学科(例如几何和物理)相关,从中可以得出直觉。在几何朗兰兹纲领中,经典朗兰兹纲领中的数域被曲线及其函数域所取代,数论中的连接网络被简洁表述的等价或对应所取代。该项目将在不同的环境中扩展和发展几何朗兰兹对应,并为研究生提供研究培训机会。更详细地说,一个项目将建立基本局部等价,这是仿射格拉斯曼的惠特克类别与还原群之间的等价以及朗兰兹对偶的 Kazhdan-Lusztig 范畴,作为因式分解范畴。这种等价性可以被视为局部几何朗兰兹纲领的起点。该项目将通过将两边等同于一个可以直接用根数据和量子参数(所谓的因式分解代数 Omega)来表达的组合对象来建立所需的等价性。另一个项目将通过将自守函数空间实现为具有幂零奇异支持的自守滑轮范畴上的 Frobenius 范畴迹,将几何和经典朗兰兹理论(在函数域的情况下)直接联系起来。在这个过程中,人们很自然地通过shtukas重新推导了V. Lafforgue在朗兰兹参数的过程模空间上对自守函数空间的分解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Kisin其他文献
Mark Kisin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Kisin', 18)}}的其他基金
Shimura Varieties and Abelian Varieties
志村品种和阿贝尔品种
- 批准号:
2200449 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Number Theory and Its Interaction with Other Disciplines
数论及其与其他学科的相互作用
- 批准号:
1802365 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Shimura Varieties and Galois representations
志村簇和伽罗瓦表示
- 批准号:
1301921 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
p-adic Hodge Theory and Applications
p-进霍奇理论及其应用
- 批准号:
1001139 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Modularity and p-adic Langlands
模块化和p-adic Langlands
- 批准号:
0701123 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
The Fontaine-Mazur conjecture via p-adic modular forms
通过 p-adic 模形式的 Fontaine-Mazur 猜想
- 批准号:
0400666 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
模p Langlands对应与Jacquet-Langlands对应研究
- 批准号:12371011
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
狄拉克上同调与朗兰兹函子性
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
朗兰兹纲领框架下覆盖群的一些表示论问题
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
狄拉克上同调与朗兰兹函子性
- 批准号:12271460
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
幂幺表示的局部朗兰兹对应与Hiraga-Ichino-Ikeda猜想
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2101984 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
A Study of Moduli Spaces of Parabolic Connections and Geometric Langlands Correspondence
抛物线连接模空间与几何朗兰兹对应的研究
- 批准号:
19J10022 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Explicit Geometric Langlands Correspondence for Rigid Local Systems
刚性局部系统的显式几何朗兰兹对应
- 批准号:
418779201 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Research Fellowships
Local and Global Geometric Langlands Correspondence
本地和全球朗兰兹几何对应
- 批准号:
1707662 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant