Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
基本信息
- 批准号:2005316
- 负责人:
- 金额:$ 41.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in the foundations of category theory and homotopy theory have led to an explosion of work and new insights into disparate fields ranging from algebraic geometry and number theory to the study of field theories in physics. The areas of the major advances are abstract: category theory is a framework for organizing different types of mathematical objects and admissible transformations between these types, while homotopy theory seeks to understand the coarse nature of shapes. The applications on the other hand include new results on the geometry and solutions of polynomial equations, important areas of research with concrete applications inside and outside of mathematics. The present proposal will harness these advances in the areas of algebraic K-theory, which is a mysterious but powerful tool for counting mathematical objects, and arithmetic geometry, which is about the influence of geometry on the structure of solutions of polynomial equations with rational coordinates. The project provides research training opportunities for graduate students and postdoctoral fellows.The project's three main objectives are (1) to directly compare the motivic and syntomic approaches to p-adic etale K-theory by showing that if R is a smooth commutative p-local commutative ring, then the trace map from K-theory to topological cyclic homology respects the motivic and syntomic filtrations after p-completion, (2) to construct a theory of coefficient systems for p-adic cohomology using cyclotomic spectra and to verify the PI's liftability conjecture, which will help to explain the relationship between the window-frame approach to the classification of formal groups and the recent prismatic Dieudonne theory developed by Anschuetz and Le Bras, and (3) to understand the filtration on prismatic cohomology arising from the cyclotomic t-structure. Short master classes will be offered for graduate students and postdoctoral researchers that each focus on a single current issue in algebraic K-theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
范畴论和同伦论基础的最新进展导致了对从代数几何和数论到物理学场论研究等不同领域的工作和新见解的爆炸式增长。主要进展的领域是抽象的:范畴论是组织不同类型的数学对象以及这些类型之间可接受的变换的框架,而同伦理论则试图理解形状的粗糙本质。另一方面,应用包括几何学和多项式方程解的新成果,这是数学内外具有具体应用的重要研究领域。 本提案将利用代数 K 理论和算术几何领域的这些进展,代数 K 理论是计算数学对象的神秘但强大的工具,算术几何是关于几何对有理坐标多项式方程解的结构的影响。该项目为研究生和博士后提供研究培训机会。该项目的三个主要目标是(1)通过证明如果 R 是平滑交换的 p-局部,直接比较 p-adic etale K 理论的动机方法和句法方法交换环,则从 K 理论到拓扑循环同调的迹图尊重 p 完成后的动机和句法过滤,(2) 构建系数系统理论使用分圆谱进行 p 进上同调并验证 PI 的可提升性猜想,这将有助于解释形式群分类的窗框方法与 Anschuetz 和 Le Bras 最近开发的棱镜 Dieudonne 理论之间的关系,以及(3 ) 了解分圆 t 结构引起的棱柱上同调的过滤。将为研究生和博士后研究人员提供短期大师班,他们各自关注代数 K 理论中的一个当前问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Antieau其他文献
David Antieau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Antieau', 18)}}的其他基金
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
- 批准号:
2304723 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
CAREER: Higher Brauer Groups and Topological Azumaya Algebras
职业:高等布劳尔群和拓扑 Azumaya 代数
- 批准号:
2120005 - 财政年份:2021
- 资助金额:
$ 41.73万 - 项目类别:
Continuing Grant
Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
- 批准号:
2102010 - 财政年份:2020
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
CAREER: Higher Brauer Groups and Topological Azumaya Algebras
职业:高等布劳尔群和拓扑 Azumaya 代数
- 批准号:
1552766 - 财政年份:2016
- 资助金额:
$ 41.73万 - 项目类别:
Continuing Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:
1461847 - 财政年份:2014
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:
1307505 - 财政年份:2013
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
- 批准号:
1358832 - 财政年份:2013
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
相似国自然基金
活性位点调控和太阳全光谱梯级利用增强Bi2O3-x等离子激元光催化剂还原CO2性能及机理
- 批准号:22372050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于分形超构表面的红外\拉曼光谱增强器件的设计
- 批准号:12304335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
荒漠河岸林盐生植被对土壤水盐的光谱响应研究
- 批准号:32360289
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
激光成丝超连续光谱及中红外少光学周期超快激光同步产生技术研究
- 批准号:62375154
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
超宽带近红外荧光陶瓷的常压玻璃晶化法制备及光谱调控研究
- 批准号:12304443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
- 批准号:
2894203 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别:
Studentship
From Spectra To Colour: A Big-Data Computational Approach
从光谱到颜色:大数据计算方法
- 批准号:
BB/X01312X/1 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别:
Research Grant
Sonic Inspection of Spectra for Uncovering Hidden and Historic Quasars
声波检测光谱以发现隐藏的和历史的类星体
- 批准号:
2889070 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别:
Studentship
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
- 批准号:
2327245 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别:
Standard Grant
Investigating the Role of Somatic Mutations in Neurofibromatosis Brain
研究体细胞突变在神经纤维瘤病脑中的作用
- 批准号:
10722624 - 财政年份:2023
- 资助金额:
$ 41.73万 - 项目类别: