Colliding quasiparticles to reconstruct their effective Hamiltonians
碰撞准粒子重建其有效哈密顿量
基本信息
- 批准号:2004995
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract: Our national competitiveness relies on our ability to make information technology faster, more energy efficient, more compact, and more affordable. Such innovation requires the discovery and implementation of new methods to characterize and then optimize the responses of materials to electricity and light. To fully understand how electrical charges move in the extremely strong and rapidly-varying electric fields that pervade modern electronics and optics, one needs to know quantities called Bloch wavefunctions, which were derived mathematically more than 90 years ago but have resisted experimental determination. The PI and his team have recently developed a robust method to reconstruct Bloch wavefunctions from experimental data which was demonstrated on a crystalline solid. The project supports reconstruction of Bloch wavefunctions in a several semiconductors that are of current scientific and technological importance. The graduate student researchers supported by this project receive broad and deep training in experimental condensed matter physics, and in turn mentor undergraduate researchers, inspire K-12 students by giving them hands-on experience with simple electrical circuits and, upon graduation are positioned for leadership in technical fields crucial to national competitiveness. Technical abstract: For many problems in modern condensed matter physics, it is important to know both the energy eigenvalues of a quasiparticle effective Hamiltonian, as well as its Bloch wavefunctions, from which the Berry curvature can be calculated. By integrating the Berry curvature over the Brillouin zone, materials can be classified topologically. Angle-Resolved Photoemission Spectroscopy enables one to measure the band structure of many materials. However, the Bloch wavefunctions and Berry curvature, which are defined at each point in quasi-momentum space, are extremely difficult to measure. This project exploits a unique opportunity to reconstruct the effective Hamiltonian of quasiparticles in semiconductors that is enabled by the phenomenon of high-order sideband generation (HSG). HSG can be thought of as a three-step process in which (1) a weak probe laser creates electron-hole pairs, (2) a strong terahertz-frequency laser adiabatically accelerates the electrons and holes first away from and then back towards each other, and (3) the electrons and holes collide and recombine, emitting sidebands that carry off the kinetic energy associated with the collision, and on whose polarization is imprinted the Berry curvature of the bands through which the electrons and holes have been accelerated. In this project, the parameters of the effective Hamiltonian that governs quasiparticle dynamics in GaAs (including the effects of strain), GeS (a layered semiconductor), and other semiconductors will be reconstructed by comparing the calculated and measured matrices that relate the polarization of sidebands to the polarization of the probe laser that excited them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:我们的国家竞争力依赖于我们使信息技术更快、更节能、更紧凑、更便宜的能力。这种创新需要发现和实施新方法来表征并优化材料对电和光的响应。为了充分了解电荷如何在现代电子学和光学领域普遍存在的极强且快速变化的电场中移动,我们需要了解称为布洛赫波函数的量,该量是 90 多年前通过数学推导出来的,但一直无法通过实验确定。 PI 和他的团队最近开发了一种强大的方法,可以根据实验数据重建布洛赫波函数,并在晶体固体上进行了演示。该项目支持在多种半导体中重建布洛赫波函数,这些半导体在当前的科学和技术方面具有重要意义。该项目支持的研究生研究人员接受了实验凝聚态物理方面广泛而深入的培训,反过来又指导本科生研究人员,通过为 K-12 学生提供简单电路的实践经验来激励他们,并在毕业后担任领导职务在对国家竞争力至关重要的技术领域。技术摘要:对于现代凝聚态物理中的许多问题,了解准粒子有效哈密顿量的能量本征值及其布洛赫波函数非常重要,从中可以计算贝里曲率。通过对布里渊区上的贝里曲率进行积分,可以对材料进行拓扑分类。角分辨光电发射光谱使人们能够测量许多材料的能带结构。然而,在准动量空间中的每个点定义的布洛赫波函数和贝里曲率极难测量。该项目利用了一个独特的机会来重建半导体中准粒子的有效哈密顿量,这是通过高阶边带生成(HSG)现象实现的。 HSG 可以被认为是一个三步过程,其中 (1) 弱探测激光产生电子空穴对,(2) 强太赫兹频率激光绝热加速电子和空穴,首先远离彼此,然后返回彼此,(3)电子和空穴碰撞并重新结合,发射边带,携带与碰撞相关的动能,并且其极化上印有电子和空穴所通过的能带的贝里曲率。加速。在该项目中,将通过比较与边带偏振相关的计算和测量矩阵来重建控制 GaAs(包括应变影响)、GeS(层状半导体)和其他半导体中准粒子动力学的有效哈密顿量参数该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explicit formula for high-order sideband polarization by extreme tailoring of Feynman path integrals
通过费曼路径积分的极端剪裁的高阶边带偏振的显式公式
- DOI:10.1103/physrevb.107.174308
- 发表时间:2023-02-06
- 期刊:
- 影响因子:3.7
- 作者:Qile Wu;M. Sherwin
- 通讯作者:M. Sherwin
Reconstruction of Bloch wavefunctions of holes in a semiconductor
半导体中空穴布洛赫波函数的重建
- DOI:10.1038/s41586-021-03940-2
- 发表时间:2021-11
- 期刊:
- 影响因子:64.8
- 作者:Costello, J. B.;O’Hara, S. D.;Wu, Q.;Valovcin, D. C.;Pfeiffer, L. N.;West, K. W.;Sherwin, M. S.
- 通讯作者:Sherwin, M. S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sherwin其他文献
Effect of water/glycerol polymorphism on dynamic nuclear polarization
- DOI:
10.1039/c8cp00358k - 发表时间:
2018-03 - 期刊:
- 影响因子:3.3
- 作者:
Alisa Leavesley;Christopher B. Wilson;Mark Sherwin;Songi Han - 通讯作者:
Songi Han
Mark Sherwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sherwin', 18)}}的其他基金
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
MRI: Development of an Agile Free-Electron-Laser-Powered Pulsed Electron Magnetic Resonance (FEL-EMR) Spectrometer
MRI:开发敏捷自由电子激光驱动脉冲电子磁共振 (FEL-EMR) 能谱仪
- 批准号:
2117994 - 财政年份:2021
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Triggered functional dynamics of proteins in biomimetic environments by time-resolved electron paramagnetic resonance at very high magnetic fields
通过极高磁场下的时间分辨电子顺磁共振触发仿生环境中蛋白质的功能动力学
- 批准号:
2025860 - 财政年份:2020
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
MRI: Development of a single-mode terahertz free electron lasers for research in materials, physics, chemistry and biology
MRI:开发单模太赫兹自由电子激光器,用于材料、物理、化学和生物学研究
- 批准号:
1626681 - 财政年份:2016
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Time-resolved conformational changes of proteins by very high frequency Gd3+ EPR
通过甚高频 Gd3 EPR 实现蛋白质的时间分辨构象变化
- 批准号:
1617025 - 财政年份:2016
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Robust Gd3+ -based spin labels for structural studies of membrane proteins
用于膜蛋白结构研究的基于 Gd3 的稳健自旋标签
- 批准号:
1244651 - 财政年份:2013
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
MRI: Development of a Free-Electron Laser for Ultrafast Pulsed Electron Paramagnetic Resonance
MRI:开发用于超快脉冲电子顺磁共振的自由电子激光器
- 批准号:
1126894 - 财政年份:2011
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Quantum Coherence and Dynamical Instability in Quantum Wells Driven by Intense Terahertz Fields.
强太赫兹场驱动的量子井中的量子相干性和动态不稳定性。
- 批准号:
1006603 - 财政年份:2010
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
相似国自然基金
磁有序系统的对称群与新型准粒子
- 批准号:12374166
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
莫尔超晶格异质结中准粒子及谷极化的传输与调控研究
- 批准号:62374095
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
铜氧化物高温超导体中准粒子的特征及相关反常物理性质的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
准粒子无规相近似演化的从头计算生成坐标法对无中微子双贝塔衰变的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
冷原子系统中的分数化准粒子、Haldane分数量子统计及其应用
- 批准号:12134015
- 批准年份:2021
- 资助金额:306 万元
- 项目类别:重点项目
相似海外基金
Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
- 批准号:
EP/Z531194/1 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Research Grant
CAREER: Theories of Gapless Quantum Matter Beyond Quasiparticles
职业:超越准粒子的无带隙量子物质理论
- 批准号:
2237522 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
- 批准号:
23H05461 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
CAREER: Nonlinear THz electrodynamics of spin quasiparticles
职业:自旋准粒子的非线性太赫兹电动力学
- 批准号:
2144256 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Localizing and Manipulating Exotic Quasiparticles in Quantum Hall Antidots
量子霍尔解毒剂中奇异准粒子的定位和操纵
- 批准号:
2104781 - 财政年份:2021
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant