Collaborative Research: NRI: INT: Customizable Lower-Limb Wearable Robot using Soft-Wearable Sensor to Assist Occupational Workers

合作研究:NRI:INT:使用软穿戴传感器协助职业工人的可定制下肢可穿戴机器人

基本信息

  • 批准号:
    2024863
  • 负责人:
  • 金额:
    $ 44.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award supports an integrative, collaborative project to develop a personalized lower-limb assistive wearable robot that reduces human effort during physically intensive activities, such as lifting. The robot works by sensing a user’s physical effort using soft-wearable electronics and responding accordingly to reduce this effort. This work has significant applications in factory labor involving weights, as overexertion injuries are both costly and frequently disabling. This research investigates the effectiveness of this wearable robot strategy in reducing human effort and develops strategies to improve the utilization of wearable robots and soft wearable electronics. The robot assistance to each individual human wearer is customized using an estimation method based on various metrics. The estimation method can also be used to design a training method using a wearable robot. The soft wearable sensors will be useful in robotics as well as medical applications related to diagnosis, monitoring, and therapeutics. The proposed project integrates research and education by developing a project-based course on wearable robotics and supporting graduate and undergraduate student mentoring in independent research and thesis studies. The project strengthens the infrastructure for education and research by helping maintain wearable robot testbeds. The research results will be broadly disseminated through publications, software, and data sets. The research team members have three objectives that contribute to the goal of customizability in wearable robot personalized assistance. First, the customization process will be improved by identifying alternative optimization criteria to efficiently estimate the user’s physical effort during physically intensive activities. This will be accomplished through a rapid and robust estimate of the user effort using a conventional physiological sensor, such as a muscle activity sensor, followed by an estimate using new soft wearable electronics. Second, the work will enhance soft-wearable electronics with the goal of improving on and replacing conventional sensors. Associated tasks will explore the feasibility of using existing soft wearable electronics as sensors and then iteratively improve the electronics and estimation method to accurately sense and estimate physiological status. Third, the study will integrate and evaluate the personalized assistance achieved using soft wearable sensor measurements in a physically intensive activity, such as lifting using an ankle exoskeleton. This task will use appropriate metrics such as energy expenditure rate of the task and muscle activity. The work will result in customized (personalized) assistance available from a wearable robot for physically intensive activities and a soft wearable sensor system to evaluate the physical status of the user and provide real-time feedback. The evaluation outcomes can be applied in interventions to mitigate or prevent existing hazards and resulting injuries to workers; thus, the results of this research will benefit human laborers in factories, warehouses, and other industrial workplaces.This proposal was funded with the National Institute for Occupational Safety and Health (NIOSH) in the Center for Disease Control and Prevention (CDC).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一个综合的协作项目,以开发一个个性化的下limb辅助可穿戴机器人,该机器人在身体强化活动(例如提升)中减少人类的努力。该机器人使用可软磨性电子设备来感知用户的体力工作,并做出相应的响应以减少这项工作。这项工作在工厂劳动中有重大应用涉及重量,因为过度劳动既昂贵又经常残疾。这项研究调查了这种可穿戴机器人策略在减少人类努力和制定策略以改善可穿戴机器人和柔软可穿戴电子产品的策略方面的有效性。使用基于各种指标的估算方法对每个人佩戴者的机器人援助进行定制。估算方法还可以用于使用可穿戴机器人设计训练方法。柔软的可穿戴传感器将在机器人以及与诊断,监测和治疗相关的医疗应用中有用。拟议的项目通过开发有关可穿戴机器人的项目课程,并在独立研究和论文研究中为毕业生和本科生的心理研究来整合研究和教育。该项目通过帮助维护可穿戴机器人测试床来实现教育和研究的基础设施。研究结果将通过出版物,软件和数据集广泛传播。研究小组成员有三个目标,可以促进可穿戴机器人个性化帮助的可定制性。首先,通过确定替代优化标准以有效地估算用户在物理密集的活动中的体育努力来改善自定义过程。这将通过使用传统的物理传感器(例如肌肉活动传感器)对用户努力进行快速且可靠的估计来实现,然后使用新的软可穿戴电子设备进行估计。其次,这项工作将增强可软磨性电子设备,以改善和替换传统传感器。相关的任务将探索使用现有的柔软可穿戴电子设备作为传感器的可行性,然后迭代地改进电子设备和估算方法,以准确感知和估计物理状态。第三,这项研究将在物理强度的活动中使用柔软的可穿戴传感器测量结果整合和评估实现的个性化辅助,例如使用脚踝外骨骼提升。此任务将使用适当的指标,例如任务和肌肉活动的能量消耗率。这项工作将为可穿戴机器人提供定制的(个性化的)帮助,以进行身体密集的活动和柔软的可穿戴传感器系统,以评估用户的身体状况并提供实时反馈。可以在干预措施中应用评估结果,以减轻或防止现有的危害并导致工人受伤;因此,这项研究的结果将使工厂,仓库和其他工业工作中的人类劳动者受益。该提案是由国家职业安全与健康研究所(NIOSH)在疾病控制与预防中心(CDC)中资助的。该奖项反映了NSF的法定任务,并通过评估了基金会的智力效果,并通过评估了Crricatial Merit和Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and Broadia and broaderia and Broadise and broader and and and and and and anderer。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft wearable flexible bioelectronics integrated with an ankle-foot exoskeleton for estimation of metabolic costs and physical effort
  • DOI:
    10.1038/s41528-023-00239-2
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Kim, Jihoon;Kantharaju, Prakyath;Yeo, Woon-Hong
  • 通讯作者:
    Yeo, Woon-Hong
Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton
Phase-Plane Based Model-Free Estimation of Steady-State Metabolic Cost
  • DOI:
    10.1109/access.2022.3205629
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kantharaju, Prakyath;Kim, Myunghee
  • 通讯作者:
    Kim, Myunghee
Evaluation of Lower Limb Exoskeleton for Improving Balance during Squatting Exercise using Center of Pressure Metrics
  • DOI:
    10.1177/1071181322661447
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sruthi Ramadurai;Michael Jacobson;Prakyath Kantharaju;Hyeon-Seong Jeong;Hee-seon Jeong;Myunghee Kim
  • 通讯作者:
    Sruthi Ramadurai;Michael Jacobson;Prakyath Kantharaju;Hyeon-Seong Jeong;Hee-seon Jeong;Myunghee Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Myunghee Kim其他文献

Bilingual Education for Minority Language Students in the US: Lessons from the Case of Elementary School in California
美国小语种学生的双语教育:加州小学案例的教训
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Myunghee Kim
  • 通讯作者:
    Myunghee Kim
A critical examination of global practices in Korean society: creating socially just diversity in English pedagogy
对韩国社会全球实践的批判性审视:在英语教学中创造社会公正的多样性
The Early Case for Stabilization and Sustainability of Korean G-SEED Based on Collaborative Governance: A Theoretical Review
基于协作治理的韩国 G-SEED 稳定和可持续性的早期案例:理论回顾
  • DOI:
    10.3390/buildings13102631
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Myunghee Kim
  • 通讯作者:
    Myunghee Kim
Kinetic study and optimization of ginger mediated ochratoxin A reduction: An eco-friendly approach including toxicity evaluation
  • DOI:
    10.1016/j.chemosphere.2024.143655
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashutosh Bahuguna;Vishal Kumar;Sumi Lee;Myunghee Kim
  • 通讯作者:
    Myunghee Kim
Whole-genome analysis guided molecular mechanism of cyanogenic glucoside degradation by yeast isolated from <em>Prunus mume</em> fruit syrup
  • DOI:
    10.1016/j.chemosphere.2022.136061
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Srinivasan Ramalingam;Ashutosh Bahuguna;Mysoon M. Al-Ansari;Gnanendra Shanmugam;Latifah Al-Humaid;Jong Suk Lee;Myunghee Kim
  • 通讯作者:
    Myunghee Kim

Myunghee Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Myunghee Kim', 18)}}的其他基金

CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了