Collaborative Research: NRI: INT: Customizable Lower-Limb Wearable Robot using Soft-Wearable Sensor to Assist Occupational Workers

合作研究:NRI:INT:使用软穿戴传感器协助职业工人的可定制下肢可穿戴机器人

基本信息

  • 批准号:
    2024863
  • 负责人:
  • 金额:
    $ 44.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award supports an integrative, collaborative project to develop a personalized lower-limb assistive wearable robot that reduces human effort during physically intensive activities, such as lifting. The robot works by sensing a user’s physical effort using soft-wearable electronics and responding accordingly to reduce this effort. This work has significant applications in factory labor involving weights, as overexertion injuries are both costly and frequently disabling. This research investigates the effectiveness of this wearable robot strategy in reducing human effort and develops strategies to improve the utilization of wearable robots and soft wearable electronics. The robot assistance to each individual human wearer is customized using an estimation method based on various metrics. The estimation method can also be used to design a training method using a wearable robot. The soft wearable sensors will be useful in robotics as well as medical applications related to diagnosis, monitoring, and therapeutics. The proposed project integrates research and education by developing a project-based course on wearable robotics and supporting graduate and undergraduate student mentoring in independent research and thesis studies. The project strengthens the infrastructure for education and research by helping maintain wearable robot testbeds. The research results will be broadly disseminated through publications, software, and data sets. The research team members have three objectives that contribute to the goal of customizability in wearable robot personalized assistance. First, the customization process will be improved by identifying alternative optimization criteria to efficiently estimate the user’s physical effort during physically intensive activities. This will be accomplished through a rapid and robust estimate of the user effort using a conventional physiological sensor, such as a muscle activity sensor, followed by an estimate using new soft wearable electronics. Second, the work will enhance soft-wearable electronics with the goal of improving on and replacing conventional sensors. Associated tasks will explore the feasibility of using existing soft wearable electronics as sensors and then iteratively improve the electronics and estimation method to accurately sense and estimate physiological status. Third, the study will integrate and evaluate the personalized assistance achieved using soft wearable sensor measurements in a physically intensive activity, such as lifting using an ankle exoskeleton. This task will use appropriate metrics such as energy expenditure rate of the task and muscle activity. The work will result in customized (personalized) assistance available from a wearable robot for physically intensive activities and a soft wearable sensor system to evaluate the physical status of the user and provide real-time feedback. The evaluation outcomes can be applied in interventions to mitigate or prevent existing hazards and resulting injuries to workers; thus, the results of this research will benefit human laborers in factories, warehouses, and other industrial workplaces.This proposal was funded with the National Institute for Occupational Safety and Health (NIOSH) in the Center for Disease Control and Prevention (CDC).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一个综合协作项目,开发一种个性化的下肢辅助可穿戴机器人,该机器人可以在举重等体力密集型活动中减少人类的体力。该机器人通过使用软可穿戴电子设备感知用户的体力,并做出相应的响应来减少体力。这项工作在工厂劳动重量方面具有重要的应用,因为过度劳累伤害不仅会造成高昂的成本,而且经常导致残疾。这项研究调查了这种可穿戴机器人策略在减少人力方面的有效性,并制定了提高可穿戴设备利用率的策略。使用基于各种指标的估计方法来定制对每个人类佩戴者的机器人辅助。该估计方法还可用于设计使用可穿戴机器人的训练方法。拟议的项目通过开发基于项目的可穿戴机器人课程并支持研究生和本科生独立研究和论文研究的指导,将研究和教育结合起来。教育基础设施和研究团队成员将通过帮助维护可穿戴机器人测试台来广泛传播研究成果,以实现可穿戴机器人个性化辅助的可定制性目标。通过确定替代优化标准来有效估计用户在体力密集活动期间的体力消耗,可以通过使用传统的生理传感器(例如肌肉活动传感器)快速而可靠地估计用户的体力消耗来实现,然后进行估计。使用新型软可穿戴设备其次,这项工作将增强软可穿戴电子设备,目标是改进和替代传统传感器。相关任务将探索使用现有软可穿戴电子设备作为传感器的可行性,然后迭代改进电子设备和估计方法以准确地感知和测量。第三,该研究将整合和评估在体力密集型活动(例如使用脚踝外骨骼举重)中使用软可穿戴传感器测量实现的个性化帮助,该任务将使用适当的指标,例如任务的能量消耗率和能量消耗率。肌肉活动。将导致可穿戴机器人为体力密集型活动提供定制(个性化)帮助,并使用软可穿戴传感器系统来评估用户的身体状态并提供实时反馈。评估结果可应用于缓解或预防的干预措施。现有的危害及其对工人造成的伤害;因此,这项研究的结果将使工厂、仓库和其他工业工作场所的工人受益。该提案由疾病中心的国家职业安全与健康研究所 (NIOSH) 资助控制与预防(CDC)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft wearable flexible bioelectronics integrated with an ankle-foot exoskeleton for estimation of metabolic costs and physical effort
  • DOI:
    10.1038/s41528-023-00239-2
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Kim, Jihoon;Kantharaju, Prakyath;Yeo, Woon-Hong
  • 通讯作者:
    Yeo, Woon-Hong
Phase-Plane Based Model-Free Estimation of Steady-State Metabolic Cost
  • DOI:
    10.1109/access.2022.3205629
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kantharaju, Prakyath;Kim, Myunghee
  • 通讯作者:
    Kim, Myunghee
Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton
Evaluation of Lower Limb Exoskeleton for Improving Balance during Squatting Exercise using Center of Pressure Metrics
  • DOI:
    10.1177/1071181322661447
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sruthi Ramadurai;Michael Jacobson;Prakyath Kantharaju;Hyeon-Seong Jeong;Hee-seon Jeong;Myunghee Kim
  • 通讯作者:
    Sruthi Ramadurai;Michael Jacobson;Prakyath Kantharaju;Hyeon-Seong Jeong;Hee-seon Jeong;Myunghee Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Myunghee Kim其他文献

Bilingual Education for Minority Language Students in the US: Lessons from the Case of Elementary School in California
美国小语种学生的双语教育:加州小学案例的教训
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Myunghee Kim
  • 通讯作者:
    Myunghee Kim
A critical examination of global practices in Korean society: creating socially just diversity in English pedagogy
对韩国社会全球实践的批判性审视:在英语教学中创造社会公正的多样性
The Early Case for Stabilization and Sustainability of Korean G-SEED Based on Collaborative Governance: A Theoretical Review
基于协作治理的韩国 G-SEED 稳定和可持续性的早期案例:理论回顾
  • DOI:
    10.3390/buildings13102631
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Myunghee Kim
  • 通讯作者:
    Myunghee Kim
Generation of Extended Bilingual Statistical Reports
生成扩展双语统计报告
Assessment of Genetic Shielding for Adenovirus Vectors
腺病毒载体遗传屏蔽的评估
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Hedley;Aleksandr Krendelshchikov;Myunghee Kim;Jian Chen;H. Hsu;J. Mountz;D. Curiel;I. Kovesdi
  • 通讯作者:
    I. Kovesdi

Myunghee Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Myunghee Kim', 18)}}的其他基金

CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 44.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了