RII Track-2 FEC: Harnessing Spatiotemporal Data Science to Predict Responses of Biodiversity and Rural Communities under Climate Change

RII Track-2 FEC:利用时空数据科学预测气候变化下生物多样性和农村社区的反应

基本信息

  • 批准号:
    2019470
  • 负责人:
  • 金额:
    $ 399.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Policy efforts are increasingly focusing on climate adaptation rather than mitigation. We seek to understand how communities of plants and animals, including forest plants and wildlife, diseases and their vectors, and agricultural crops, will respond to climate change. We will do this by building some of the first mechanistic models of shifts in species ranges in response to climate change. We further seek to model how farmers and rural human societies in the U.S. that depend on these organisms will adapt in response. To do this, we will develop novel approaches and software tools for modeling, visualizing, and forecasting spatial and temporal data. We seek to provide our model results to farmers to improve their ability to adapt to climate change, to better understand what kinds of data farmers need, and how scientists can better communicate complex spatiotemporal data with farmers. We will use our research framework to provide curriculum and training sessions at the high school, undergraduate, graduate, and faculty levels in data science, a rapidly expanding job market in New England. We will also increase research capacity in these fields at the University of Maine, University of Vermont, University of Maine at Augusta, and Champlain College.Significant climate change over the next century cannot be fully avoided, and is now inevitable. We know that one of the main responses of plants and animals to climate change is that populations of species will move to new locations where the climate is more hospitable. Where will these species end up, and how will that affect farmers and rural communities in the U.S.? We aim to produce detailed predictions of where wildlife, forest plants, disease and their carriers, and agricultural crops in New England will shift to live over the next 100 years. We will also analyze how farmers will respond to these shifts in which crop plants are potentially viable on their land. To do this, we will first develop new software tools for scientists working with data on patterns changing in time and space simultaneously. We will work closely with farmers to understand what data they need to adapt to climate change, to communicate our results, and to improve how scientists communicate complex data. Finally, we will provide significant training in data science, a rapidly growing job market, at multiple age levels. We will also increase research capacity in these fields at the University of Maine, University of Vermont, University of Maine at Augusta, and Champlain College.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
政策努力越来越关注气候适应而不是减缓。我们寻求了解植物和动物群落,包括森林植物和野生动物、疾病及其媒介以及农作物,将如何应对气候变化。我们将通过建立一些第一个物种范围因气候变化而变化的机械模型来实现这一目标。我们进一步寻求模拟依赖这些生物体的美国农民和农村人类社会将如何适应。为此,我们将开发新的方法和软件工具来建模、可视化和预测空间和时间数据。我们寻求向农民提供我们的模型结果,以提高他们适应气候变化的能力,更好地了解农民需要什么样的数据,以及科学家如何更好地与农民沟通复杂的时空数据。我们将利用我们的研究框架为高中、本科生、研究生和教师级别的数据科学提供课程和培训课程,数据科学是新英格兰快速扩张的就业市场。我们还将提高缅因大学、佛蒙特大学、缅因大学奥古斯塔分校和尚普兰学院在这些领域的研究能力。下个世纪的重大气候变化无法完全避免,现在已经不可避免。我们知道,动植物对气候变化的主要反应之一是物种种群将迁移到气候更适宜的新地点。这些物种最终会去哪里?这将如何影响美国的农民和农村社区?我们的目标是对未来 100 年新英格兰的野生动物、森林植物、疾病及其携带者以及农作物将转移到哪里生活进行详细预测。我们还将分析农民将如何应对这些作物在其土地上可能可行的转变。为此,我们将首先为科学家开发新的软件工具,以处理时间和空间同时变化的模式数据。我们将与农民密切合作,了解他们需要哪些数据来适应气候变化,传达我们的结果,并改进科学家传达复杂数据的方式。最后,我们将在多个年龄段提供数据科学方面的重要培训,这是一个快速增长的就业市场。我们还将提高缅因大学、佛蒙特大学、缅因大学奥古斯塔分校和尚普兰学院在这些领域的研究能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simple null model analysis subsumes a new species co‐occurrence index: A comment on Mainali et al. (2022)
简单的零模型分析包含一个新物种共现指数:对 Mainali 等人的评论。
  • DOI:
    10.1111/jbi.14486
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ulrich, Werner;Sfenthourakis, Spyros;Strona, Giovanni;Gotelli, Nicholas J.
  • 通讯作者:
    Gotelli, Nicholas J.
Deriving topological relations from topologically augmented direction relation matrices
Estimating species relative abundances from museum records
  • DOI:
    10.1111/2041-210x.13705
  • 发表时间:
    2021-09-07
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Gotelli, Nicholas J.;Booher, Douglas B.;Primack, Richard B.
  • 通讯作者:
    Primack, Richard B.
A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base
  • DOI:
    10.1111/geb.13497
  • 发表时间:
    2022-04-18
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Feng, Xiao;Enquist, Brian J.;Lopez-Hoffman, Laura
  • 通讯作者:
    Lopez-Hoffman, Laura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian McGill其他文献

Reply to: Shifting baselines and biodiversity success stories
回复:改变基线和生物多样性的成功案例
  • DOI:
    10.1038/s41586-021-03749-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Brian Leung;Anna L Hargreaves;D. Greenberg;Brian McGill;M. Dornelas
  • 通讯作者:
    M. Dornelas
Disentangling non-random structure from random placement when estimating β-diversity through space or time
在通过空间或时间估计 β 多样性时,将非随机结构与随机放置分开
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. McGlinn;S. Blowes;M. Dornelas;Thore Engel;Inês S. Martins;Hideyasu Shimadzu;N. Gotelli;A. Magurran;Brian McGill;Jonathan M. Chase
  • 通讯作者:
    Jonathan M. Chase
Synthesis reveals approximately balanced biotic differentiation and homogenization
合成揭示了大致平衡的生物分化和均质化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    S. Blowes;Brian McGill;V. Brambilla;Cher F. Y. Chow;Thore Engel;Ada Fontrodona;Inês S. Martins;Daniel McGlinn;Faye Moyes;A. Sagouis;Hideyasu Shimadzu;Roel van Klink;Wu;N. Gotelli;A. Magurran;M. Dornelas;Jonathan M. Chase
  • 通讯作者:
    Jonathan M. Chase

Brian McGill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian McGill', 18)}}的其他基金

Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges
合作研究:ABI 开发:创建扩大物种范围生产的通用工作流程
  • 批准号:
    1564643
  • 财政年份:
    2016
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Interdisciplinary Informatics for FY 2003
2003财年跨学科信息学博士后研究奖学金
  • 批准号:
    0306036
  • 财政年份:
    2003
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Fellowship Award

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
  • 批准号:
    42304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
  • 批准号:
    2316366
  • 财政年份:
    2023
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316128
  • 财政年份:
    2023
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
  • 批准号:
    2316126
  • 财政年份:
    2023
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
  • 批准号:
    2316271
  • 财政年份:
    2023
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
  • 批准号:
    2316296
  • 财政年份:
    2023
  • 资助金额:
    $ 399.54万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了