MRI: Acquisition of High-Power 100 kHz Laser for Recording Real-Time Movies of Ultrafast Molecular Reactions

MRI:采集高功率 100 kHz 激光来记录超快分子反应的实时电影

基本信息

  • 批准号:
    2019150
  • 负责人:
  • 金额:
    $ 115.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The ability to predict and control the outcome of chemical reactions is essential for many areas of modern physics, chemistry and biology. This ability requires detailed knowledge of how individual atoms in molecules move to break, form, or rearrange chemical bonds between them during the reaction. This research project aims at obtaining high-resolution movies of such atomic motion. Since the atoms involved in chemical reactions move extremely fast, typically on a time scale of few tens of femtoseconds (one femtosecond is one millionth of a billionth of a second), ultrashort, femtosecond laser pulses are the only experimental tools capable of recording such movies in real time. However, because of the quantum nature of atoms and molecules, the outcome of any molecular reaction is not deterministic: even if one measurement precisely captures the positions of all atoms at a given time, the same measurement will have different outcomes if repeated several times, even under exactly identical conditions. The acquisition of a high-power laser system delivering a hundred thousand pulses (each shorter than 10 femtoseconds) per second will enable repeating such measurements millions of times, which is needed for the creation of a quantum-mechanical molecular movie. Each frame of a movie then reflects the probability of every possible configuration of atoms at different stages of the reaction, instead of a fixed picture of a molecule. Such movies will advance our understanding of fundamental chemical processes and provide input for applications in areas of national priority, ranging from efficient energy conversion and storage to synthesis of novel materials, drug design and molecular electronics. This project is jointly funded by the Major Research Instrumentation program and the Established Program to Stimulate Competitive Research (EPSCoR). Within this project, a broad range of photochemical processes, including photodissociation and isomerization, charge transfer reactions and formation of van der Waals clusters, will be studied. For each of these processes, the main scientific goal is to image the time-dependent molecular geometry and simultaneously characterize the evolving electronic structure of the molecule. This will be achieved by employing several complementary time-resolved techniques, including photoelectron spectroscopy and ion momentum imaging, inner-shell and laser-induced photoelectron diffraction, as well as ion beam techniques and Fourier-transform spectroscopy for characterization of the neutral fragments. For all these techniques, the key technical aspect facilitating simultaneous characterization of electronic and nuclear degrees of freedom will be the coincident detection of several reaction products, enabled by the high repetition rate of the acquired laser. At the same time, its high average power of several hundred watts will enable the efficient conversion of the emitted near-infrared radiation to a broad range of different wavelengths (from long-wavelength infrared to extreme ultraviolet and soft x-rays) needed for initiating and probing the reactions to be studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预测和控制化学反应结果的能力对于现代物理、化学和生物学的许多领域至关重要。这种能力需要详细了解分子中的各个原子在反应过程中如何移动以断裂、形成或重新排列它们之间的化学键。该研究项目旨在获得此类原子运动的高分辨率电影。由于参与化学反应的原子移动速度极快,通常在几十飞秒的时间尺度上(一飞秒是十亿分之一秒的百万分之一),超短飞秒激光脉冲是唯一能够记录此类电影的实验工具实时。然而,由于原子和分子的量子性质,任何分子反应的结果都不是确定性的:即使一次测量精确地捕获了给定时间所有原子的位置,如果重复多次,相同的测量也会产生不同的结果,即使在完全相同的条件下。获取每秒提供十万个脉冲(每个脉冲短于 10 飞秒)的高功率激光系统将能够重复此类测量数百万次,这是创建量子力学分子电影所需的。电影的每一帧都反映了原子在反应不同阶段的每种可能构型的概率,而不是分子的固定图片。此类电影将增进我们对基本化学过程的理解,并为国家优先领域的应用提供输入,从有效的能量转换和存储到新型材料的合成、药物设计和分子电子学。 该项目由重大研究仪器计划和刺激竞争性研究既定计划(EPSCoR)共同资助。在该项目中,将研究广泛的光化学过程,包括光解离和异构化、电荷转移反应和范德华簇的形成。对于每个过程,主要的科学目标是对随时间变化的分子几何形状进行成像,并同时表征分子不断演变的电子结构。这将通过采用几种互补的时间分辨技术来实现,包括光电子能谱和离子动量成像、内壳和激光诱导光电子衍射,以及用于表征中性碎片的离子束技术和傅里叶变换能谱。对于所有这些技术,促进电子和核自由度同时表征的关键技术方面将是通过所获取的激光的高重复率实现多种反应产物的同时检测。同时,其数百瓦的高平均功率将能够将发射的近红外辐射有效地转换为启动所需的各种不同波长(从长波红外到极紫外和软X射线)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Artem Rudenko其他文献

The Ring-Closing Reaction of Cyclopentadiene Probed with Ultrafast X-ray Scattering.
用超快 X 射线散射探测环戊二烯的闭环反应。
  • DOI:
    10.1021/acs.jpca.4c02509
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lisa Huang;Lauren Bertram;Lingyu Ma;Nathan Goff;Stuart W Crane;Asami Odate;T. Northey;Andrés Moreno Carrascosa;Mats Simmermacher;S. B. Muvva;Joseph D Geiser;Matthew J Lueckheide;Zane Phelps;Mengning Liang;Xinxin Cheng;Ruaridh J G Forbes;Joseph S. Robinson;Matthew J Hayes;F. Allum;Alice E. Green;Kenneth Lopata;Artem Rudenko;Thomas J. A. Wolf;M. Centurion;D. Rolles;M. Minitti;Adam Kirrander;Peter M. Weber
  • 通讯作者:
    Peter M. Weber
Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments.
在 IR-XUV 泵浦探针实验中研究了分子碘的多重电离和碎裂动力学。
  • DOI:
    10.1039/c4fd00031e
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    K. Schnorr;A. Senftleben;G. Schmid;Artem Rudenko;M. Kurka;K. Meyer;L. Foucar;M. Kübel;Matthias F. Kling;Yuhai Jiang;S. Düsterer;R. Treusch;C. Schröter;J. Ullrich;T. Pfeifer;R. Moshammer
  • 通讯作者:
    R. Moshammer
Attosecond-correlated dynamics of two electrons in argon
氩气中两个电子的阿秒相关动力学
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Sharma;N. Camus;B. Fischer;M. Kremer;Artem Rudenko;B. Bergues;M. Kuebel;Nora G. Johnson;Matthias F. Kling;T. Pfeifer;J. Ullrich;J. Ullrich;R. Moshammer
  • 通讯作者:
    R. Moshammer
Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.
利用 X 射线自由电子激光器对孤立分子进行原子分辨率衍射成像。
  • DOI:
    10.1039/c4fd00028e
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Stern;L. Holmegaard;F. Filsinger;Arnaud Rouz'ee;Artem Rudenko;Per Johnsson;Andrew V. Martin;A. Barty;C. Bostedt;J. Bozek;R. Coffee;S. Epp;B. Erk;L. Foucar;R. Hartmann;N. Kimmel;Kai;Jochen Maurer;Marc Messerschmidt;B. Rudek;D. Starodub;J. Thøgersen;G. Weidenspointner;T. A. White;Henrik Stapelfeldt;D. Rolles;H. Chapman;J. Kupper
  • 通讯作者:
    J. Kupper
Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction
监测光化学反应早期相关产物群的演变
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    15
  • 作者:
    J. P. Figueira Nunes;Lea M Ibele;Shashank Pathak;Andrew R. Attar;Surjendu Bhattacharyya;R. Boll;K. Borne;M. Centurion;B. Erk;Ming;Ruaridh J G Forbes;Nathan Goff;Christopher S Hansen;Matthias C. Hoffmann;David M. P. Holland;R. Ingle;D. Luo;S. B. Muvva;Alexander H Reid;Arnaud Rouz'ee;Artem Rudenko;Sajib Kumar Saha;X. Shen;A. Venkatachalam;Xijie Wang;M. R. Ware;S. Weathersby;K. Wilkin;Thomas J. A. Wolf;Yanwei Xiong;Jie Yang;M. Ashfold;D. Rolles;Basile F. E. Curchod
  • 通讯作者:
    Basile F. E. Curchod

Artem Rudenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MRI:Acquisition of a Network Emulator for Cyber Security Research of Electric Power Grids
MRI:购买网络模拟器用于电网网络安全研究
  • 批准号:
    2214441
  • 财政年份:
    2022
  • 资助金额:
    $ 115.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High Power and Resolution X-ray Microscopy System for Advanced Characterization, Non-Destructive Evaluation, and Cross-Disciplinary Research & Innovation
MRI:采购高功率和分辨率 X 射线显微镜系统,用于高级表征、无损评估和跨学科研究
  • 批准号:
    2216175
  • 财政年份:
    2022
  • 资助金额:
    $ 115.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Power 2-um Laser System as the Backbone of an Utrafast X-Ray/THz Facility
MRI:采购高功率 2 微米激光系统作为超快 X 射线/太赫兹设施的骨干
  • 批准号:
    2117826
  • 财政年份:
    2021
  • 资助金额:
    $ 115.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Temperature Semiconductor Processing Equipment to Support Research and Education in Power, Energy and Material Sciences
MRI:采购高温半导体加工设备以支持电力、能源和材料科学的研究和教育
  • 批准号:
    2019064
  • 财政年份:
    2020
  • 资助金额:
    $ 115.67万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Power-Hardware-in-the-Loop (PHIL) System to Enhance Research and Student Research Training in Engineering and Computer Science
MRI:采购动力硬件在环 (PHIL) 系统以加强工程和计算机科学领域的研究和学生研究培训
  • 批准号:
    1946057
  • 财政年份:
    2019
  • 资助金额:
    $ 115.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了