Thermoelectric effects at the nanoscale

纳米尺度的热电效应

基本信息

项目摘要

In recent years it has become clear that the thermal forces on charged colloids are to a large extent determined by thermoelectricity. In the bulk, the thermoelectric or Seebeck field is proportional to the applied temperature gradient. Both sign and magnitude of the Seebeck coefficient depend on the electrolyte composition and the connected effects explain a wealth of current experiments on colloidal suspensions. The perspectives of the thermoelectric effects in solution are, however, much wider than currently explored.Thermoelectric effects are, for example, highly relevant for biotechnological and microfluidic applications, where selective colloidal transport, size separation, molecular trapping and confinement are required. Such applications become even more appealing when considering that the required heating for such thermoelectric processes can be supplied by taking advantage of the strong plasmonic interaction of noble metal structures with light. This leads to very strong local temperature gradients, which will allow for a new type of optically controlled micro- and nanofluidics in future applications. This project thus proposes to explore in a unique combined theoretical and experimental effort, the thermoelectric properties at the nano- and micro-scale in an electrolyte solution. There are two main objectives: The first one is to better understand the forces operating in the self-propulsion of hot Janus particles. The second one aims at the design and realization of thermally generated electric fields in confined geometries and nanostructures. On the theoretical side we have to solve the coupled thermo-electro-osmotic equations relating the salt-ion currents and the Seebeck field. Then the particle motility is obtained from plugging the resulting thermodynamic forces in the Stokes equation. As main results we expect to determine the charge distribution in the vicinity of a hot particle, in particular the net thermo-charge and the dipole moment, and the resulting translational and rotational motion. We intend to work out possible microfluidic applications for colloidal transport and separation by size.The experiments proposed in this project are directly related to the theoretical tasks. They focus on the study of the influence of thermoelectric effects on the motion of noble metal and noble metal capped Janus particles, which are heated by optical means. The experiments involve advanced particle tracking techniques, which are combined with active particle manipulation, such as the recently developed photon nudging. The experimental studies will be completed by an investigation of the electric field distribution around mobile and immobile heated metal nanostructures in electrolyte solution, which will provide the fundamental means to develop new structures for the generation of freely configurable thermoelectric fields for micro- and nano-manipulation.
近年来,人们已经清楚带电胶体上的热力在很大程度上是由热电决定的。总体而言,热电场或塞贝克场与所施加的温度梯度成正比。塞贝克系数的符号和大小都取决于电解质成分,相关效应解释了当前关于胶体悬浮液的大量实验。然而,溶液中热电效应的前景比目前探索的要广泛得多。例如,热电效应与生物技术和微流体应用高度相关,这些应用需要选择性胶体传输、尺寸分离、分子捕获和限制。当考虑到可以通过利用贵金属结构与光的强等离子体相互作用来提供此类热电过程所需的加热时,此类应用变得更加有吸引力。这会导致非常强的局部温度梯度,这将在未来的应用中实现新型光控微纳米流体。因此,该项目建议通过独特的理论和实验相结合的方式探索电解质溶液中纳米和微米尺度的热电特性。有两个主要目标:第一个是更好地了解热两面神粒子的自推进力。第二个目标是在受限几何形状和纳米结构中设计和实现热产生电场。在理论方面,我们必须求解与盐离子电流和塞贝克场相关的热电渗耦合方程。然后,通过将产生的热力学力代入斯托克斯方程中来获得粒子运动性。作为主要结果,我们期望确定热粒子附近的电荷分布,特别是净热电荷和偶极矩,以及由此产生的平移和旋转运动。我们打算研究胶体传输和尺寸分离的可能的微流体应用。该项目中提出的实验与理论任务直接相关。他们重点研究热电效应对通过光学手段加热的贵金属和贵金属封端的Janus粒子运动的影响。这些实验涉及先进的粒子跟踪技术,该技术与主动粒子操纵相结合,例如最近开发的光子轻推。实验研究将通过研究电解质溶液中移动和固定加热金属纳米结构周围的电场分布来完成,这将为开发新结构以产生用于微纳米操纵的可自由配置的热电场提供基本手段。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermoelectric fields hold nanoparticles
  • DOI:
    10.1038/s41566-018-0143-2
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    35
  • 作者:
    F. Cichos
  • 通讯作者:
    F. Cichos
Thermophoretic trap for single amyloid fibril and protein aggregation studies
  • DOI:
    10.1038/s41592-019-0451-6
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Fraenzl, Martin;Thalheim, Tobias;Cichos, Frank
  • 通讯作者:
    Cichos, Frank
Polarization of thermophoretic swimmers in external temperature fields
外部温度场中热泳泳者的极化
  • DOI:
    10.1117/12.2239482
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.P. Bregulla;F. Cichos
  • 通讯作者:
    F. Cichos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frank Cichos其他文献

Professor Dr. Frank Cichos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Frank Cichos', 18)}}的其他基金

Ballistic Hot Brownian Motion
弹道热布朗运动
  • 批准号:
    336492136
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Propulsion and Interaction of Hot Brownian Swimmers
热布朗游泳者的推进和相互作用
  • 批准号:
    254960539
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Koordination der Forschungsgruppe 877
877研究组的协调
  • 批准号:
    184122461
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Ortsaufgelöste Detektion von Struktur und Dynamik in nematischen Phasen biaxialer Moleküle
双轴分子向列相结构和动力学的空间分辨检测
  • 批准号:
    33054593
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hot Brownian Motion
热布朗运动
  • 批准号:
    58079228
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Static and dynamic properties of DNA-based polymer structures under constraints and confinement
基于 DNA 的聚合物结构在约束和约束下的静态和动态特性
  • 批准号:
    58098735
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Light Emission of Single Emitters in 3-dimensional Photonic Crystals
3 维光子晶体中单个发射器的发光
  • 批准号:
    24778895
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Photophysik und Photochemie an Grenzflächen von Silizium Nanoteilchen
硅纳米粒子界面的光物理和光化学
  • 批准号:
    5259200
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Units
Anti-Stokes Cooling for Fluidics
流体的反斯托克斯冷却
  • 批准号:
    465090835
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamics and thermodynamics in artificial and natural active systems with delay
具有延迟的人工和自然主动系统中的动力学和热力学
  • 批准号:
    432421051
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

成骨细胞初级纤毛通过NPHP4/YAP/EZH2信号轴调控CKIP-1表达影响牵张成骨效果的机制研究
  • 批准号:
    82301046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
事半功倍还是适得其反?虚拟影响者健康营销的效果、机制与策略研究
  • 批准号:
    72302249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
  • 批准号:
    42377063
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
电商平台引入绿色认证的经济价值、作用效果及策略优化研究
  • 批准号:
    72301215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双特异性纳米抗体EVNA的构建及干预高原肺动脉高压发生发展的效果和机制研究
  • 批准号:
    82360334
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electrowetting Effects and Nanoscale Transport
电润湿效应和纳米级传输
  • 批准号:
    2303574
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Measuring and Modeling the Effects of Reticular Lamina Flexibility on Outer Hair Cell Bundle Phase and Cochlear Amplification
测量和模拟网状层灵活性对外毛细胞束相位和耳蜗放大的影响
  • 批准号:
    10676401
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel tool development for quantitative PharmacoSTORM super-resolution imaging of the nanoscale distribution of D3 dopamine receptors
用于 D3 多巴胺受体纳米级分布定量 PharmacoSTORM 超分辨率成像的新工具开发
  • 批准号:
    10510936
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208260
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了