Improving Online Learning with Interpolated Retrieval

通过插值检索改进在线学习

基本信息

  • 批准号:
    2017333
  • 负责人:
  • 金额:
    $ 64.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Online learning represents a rapidly growing feature of post-secondary education. According to a recent report from the National Center for Education Statistics, it is estimated that 1 in 7 students enroll exclusively online, and that 1 in 3 students have taken at least one online course, notwithstanding the fact that COVID-19 has forced most education online, at least temporarily. Within the context of online learning, video-recorded lectures represent the primary mode of information delivery, but learning from online lectures is often plagued by bouts of inattention that impede effective learning. This award will allow the researchers to build on their preliminary work demonstrating that breaking long lecture videos into shorter, more manageable segments, and asking students to express what they have learned during these breaks can reliably improve attention and learning. More specifically, the researchers will aim to (1) develop and evaluate a theoretical framework to better understand why it is effective to intersperse video-recorded lectures with brief quizzes, (2) test the generalizability of this behavioral intervention across multiple STEM areas and student populations, including both students who enroll in public universities and in community colleges, and (3) construct evidence-based guidelines around optimal parameters for interspersing video-recorded lectures with brief quizzesHigher education is increasingly being delivered online, where students are prone to inattention and poor learning outcomes relative to in-person instruction. One technique that supports attention and learning is interpolated retrieval—the act of inserting brief test questions into prolonged sequences of learning. Although substantial empirical data have provided support for its effectiveness, existing research has progressed in the absence of a guiding theoretical framework, without which future research would likely remain limited in scope. In this proposal, the investigators introduce and evaluate an Attention-Integration theoretical framework of interpolated retrieval practice. According to this framework, interpolated retrieval enhances learning via two routes. First, interpolated retrieval increases learners’ engagement with and test expectancy for the material, which improves processes associated with attention. Second, interpolated retrieval induces changes in learners’ strategy and increases the accessibility of the tested information, which allows learners to meaningfully integrate the contents of study into a coherent mental representation. Four studies will test the critical assumptions of this framework. Studies 1 and 2 are designed to test the attention component of the framework; Studies 3 and 4 are designed to test the integration component of the framework. All four studies will use the same set of materials and similar participant samples, which allows the investigators to conduct a large-scale mediation-moderation analysis at the conclusion of data collection for all studies. This analysis will be instrumental to the refinement and clarification of the interrelations among the various components of the Attention-Integration framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线学习代表了大专教育的快速增长。根据国家教育统计中心的最新报告,据估计,只有七分之一的学生仅在线注册,而三分之一的学生至少参加了一门在线课程,尽管Covid-19至少在网上迫使大多数教育在线,至少是暂时的。在在线学习的背景下,视频录制的讲座代表了信息传递的主要方式,但是从在线讲座中学习通常会受到阻碍有效学习的陷入困境的困扰。该奖项将使研究人员能够以他们的初步工作为基础,表明将长期的演讲视频分为较短,更易于管理的细分市场,并要求学生表达他们在这些休息期间所学到的知识可以可靠地改善关注和学习。更具体地说,研究人员将旨在(1)开发和评估一个理论框架,以更好地理解为什么用简短的测验中的视频录制的视频录制的讲座有效,(2)测试这种行为干预跨多个STEM领域和学生群体的行为干预的普遍性,包括在社区大学和(3)中构建循证参数的学生,以及(3),以及(3),以及(3),在社区大学和(3)构建了(3)跨越的循证范围。简短的Quizzeshigher教育越来越多地在线交付,在该教育中,学生容易受到注意,而相对于面对面的指导,学习成果不佳。一种支持关注和学习的技术是插值检索 - 将简短的测试问题插入长期学习序列的行为。尽管实质性的经验数据为其有效性提供了支持,但在没有指导理论框架的情况下,现有的研究仍在进行,没有这些框架的情况下,未来的研究可能会在范围内仍然有限。该提案,调查人员介绍并评估了插值检索实践的关注融合理论框架。根据此框架,插值检索通过两条路线增强了学习。首先,插值的检索增加了学习者对材料的参与和测试期望,这改善了与注意力相关的过程。其次,插值检索会导致学习者策略的变化,并增加了测试信息的可访问性,这使学习者可以将研究内容集成到连贯的心理表示中。四项研究将测试该框架的关键假设。研究1和2旨在测试框架的注意力成分。研究3和4旨在测试框架的集成部分。所有四项研究都将使用相同的材​​料和相似参与者样本,这使研究人员可以在所有研究的数据收集结束时进行大规模的调解分析。该分析将有助于对关注整合框架的各个组成部分之间的相互关系的完善和澄清。本奖反映了NSF的法定任务,并通过评估基金会的知识分子和更广泛的影响来审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chun-Kit Chan其他文献

A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer
  • DOI:
    10.1016/j.optcom.2005.05.039
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Guo-Wei Lu;Lian-Kuan Chen;Chun-Kit Chan
  • 通讯作者:
    Chun-Kit Chan
Squared and rectangular QAM compatible decoder for spectrally efficient frequency division multiplexing optical systems
  • DOI:
    10.1016/j.optlastec.2023.109776
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peiji Song;Zhouyi Hu;Hongyao Chen;Chun-Kit Chan
  • 通讯作者:
    Chun-Kit Chan

Chun-Kit Chan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

在线碎片化学习对“数字游民”型员工数字能力与创新绩效的影响机制研究
  • 批准号:
    72301088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社交媒体环境下基于深度强化学习的适应性在线资产配置策略研究
  • 批准号:
    72371080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于动态认知诊断的在线学习智能推荐方法
  • 批准号:
    62377036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
集成在线学习,弱监督深度学习和动态交互的三维医学图像分割平台
  • 批准号:
    62301326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
受限反馈下的可信在线学习
  • 批准号:
    62376275
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Improving Learning Outcomes and Equity in Blended Online and Face-to-Face Learning
提高在线和面对面混合学习的学习成果和公平性
  • 批准号:
    2314930
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Standard Grant
Improving communicative competence through online intercultural exchange
通过在线跨文化交流提高交际能力
  • 批准号:
    23K00695
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Novice Driver Roadway Hazard Identification Through a Parent-Focused Intervention
通过以家长为中心的干预措施提高新手驾驶员道路危险识别能力
  • 批准号:
    10890278
  • 财政年份:
    2023
  • 资助金额:
    $ 64.2万
  • 项目类别:
Web-based technology and cognitive training: improving executive control in cognitivelyhealthy older adults
基于网络的技术和认知训练:改善认知健康老年人的执行控制
  • 批准号:
    10682616
  • 财政年份:
    2022
  • 资助金额:
    $ 64.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了