EAGER: Gate tunable thermo-plasmonic mid-IR coherent light emitters
EAGER:门可调谐热等离子体中红外相干光发射器
基本信息
- 批准号:2016636
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this work is to demonstrate wavelength-tunable, laser-like, mid-infrared light emitters on a chip. This will be achieved, for the first time, by coupling of surface resonance in silicon carbide with plasmonic resonance in graphene films. The proposed tunable, mid-infrared source has many advantages over existing coherent infrared sources such as tunable lasers which include complete mechanical motion free tunability of wavelength, small size for various lightweight and mobile platforms, and extremely fast response for high speed applications. The small form factor, tunability and integration potential of these devices will usher a new generation of optical lab-on-chip devices where detection of relevant biomarkers, cells, and ligand chemistries can be spectroscopically realized and thus will enable the development of inexpensive, next generation point of care biosensors. The availability of frequency tunable emitters is likely to open opportunities in the area of on-chip optical communications and optical data transfer that are hitherto considered as cumbersome. The potential bandwidth afforded by such systems may revolutionize data transfer rates and volumes. A robust research and mentoring program consisting of a graduate and undergraduate student working on the project is proposed for this 1-year EAGER proposal.This proposal aims to explore, investigate, and demonstrate the possibility of achieving tunable, coherent radiation sources in 11 - 12 μm wavelength range. To accomplish this, we propose to hybridize the localized surface resonance of bulk thermo-plasmonic materials such as silicon carbide with gate-tunable surface plasmonic resonance of two-dimensional materials such as graphene to manipulate the emission characteristics of thermal radiation sources. The proposed experimental study will examine the relation between applied gate-voltage modulated optical properties of graphene, and the corresponding shift in coupled plasmonic and phononic resonance. The study is aimed at deepening the understanding of the coupling between surface phonon resonances of a radiating surface and gate tunable surface plasmon resonance of graphene sheets. The fact that surface phonons and surface plasmons are consequences of resonant ions and electrons respectively raises interesting questions of how momentum matching is balanced between particles of different rest masses. This study will present details of theoretical and the experimentally obtained emission/absorption properties at different temperatures and different wavelengths, specifically, the minimum resolution of wavelength shift that can be achieved with gate-voltage and temperature. From an experimental standpoint, the proposed work will systematically investigate plasmonic tuning of the emission characteristics. Heterogeneous integration techniques with novel micro and nanofabrication methods will be used. The electronic control will allow for programmability of the emitter to auto-sweep through a band of wavelength of interest, to determine the absorption spectrum of samples in spectroscopy applications. The wavelength sweep timeframes of the spectrometers can be potentially accomplished in the milli – nano seconds allowing for the realization of ultrafast IR tunable sources. The fast, narrowband emission characteristics of the gate-tunable plasmonic emitters can provide nearfield infrared communication solutions in the context of next generation neuromorphic computing and sensing devices. Preliminary calculations show that these sources can generate an intensity of ~200 µW/mm2 and should be enough for spectroscopy and communication applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工作的目的是通过在碳化物中的表面共振与等离烯膜中的等离子共振来证明E-In-In-Infrade Light发射器。随着可调激光运动的波长无调,小尺寸的堡垒轻量级和移动平台的pplications pplications pplications。 Be Spectroscopilly Int the Opentials的可用性可能会在该区域开放式光学通信d光学数据转移迄今为止,该系统的潜在带宽可能会彻底改变数据传输速度由研究生和本科生组成的研究和指导计划是项目SAL。此提案旨在探索,调查和证明在11-12μm波长范围内实现可调的,连贯的辐射源的可能性。大量热质量母校的表面共振作为硅IDE,具有栅极可调的表面表面等离子体谐振二维材料(例如石墨烯),以操纵热RA源的发射特性。支撑的实验研究将检查电压之间的关系,耦合等离子和语音性神性偶联的光学特性。匹配的匹配量不同,理论的细节和实验性的差异在不同的波长sysedpoint上获得的发射/吸收特性,而波长的工作工作则逐渐估计。使用的方法。在下一代神经形态计算和传感设备的背景下,栅极可调的等离子发射器可以提供近场红外的交流解决方案。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Tadigadapa其他文献
Selective Functionalization of Micromachined Quartz Resonator Arrays Using Electrochemical Techniques for Biosensing Applications
使用电化学技术对生物传感应用微机械石英谐振器阵列进行选择性功能化
- DOI:
10.1109/lsens.2024.3398549 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
P. Kao;David Allara;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Fabrication and Characterization of Micromachined Piezoelectric T-Beam Actuators
微机械压电 T 形梁致动器的制造和表征
- DOI:
10.1109/jmems.2012.2221682 - 发表时间:
2013 - 期刊:
- 影响因子:2.7
- 作者:
K. Mateti;Zheqian Zhang;Christopher D. Rahn;Srinivas Tadigadapa - 通讯作者:
Srinivas Tadigadapa
Srinivas Tadigadapa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Tadigadapa', 18)}}的其他基金
Collaborative Research: An implantable intracranial ultrasound stimulation for treating neurodiseases
合作研究:用于治疗神经疾病的植入式颅内超声刺激
- 批准号:
2053591 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
PFI:AIR - TT: Continuous Urine Assay Instrumentation for Monitoring Kidney Function
PFI:AIR - TT:用于监测肾功能的连续尿液分析仪器
- 批准号:
1903210 - 财政年份:2018
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
PFI:AIR - TT: Continuous Urine Assay Instrumentation for Monitoring Kidney Function
PFI:AIR - TT:用于监测肾功能的连续尿液分析仪器
- 批准号:
1601385 - 财政年份:2016
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
I-Corps: Calorimetric Diagnostic Instrument for Acute Kidney Infection Monitoring
I-Corps:用于监测急性肾脏感染的量热诊断仪器
- 批准号:
1544180 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
CHIP SCALE MAGNETIC SENSOR ARRAYS BASED ON MAGNETOVISCOUS EFFECT OF FERROFLUIDS
基于铁磁流体磁粘效应的芯片级磁传感器阵列
- 批准号:
1305653 - 财政年份:2013
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Quartz Resonator Array for calorimetric (bio)chemical Sensing Applications
用于量热(生物)化学传感应用的石英谐振器阵列
- 批准号:
0925438 - 财政年份:2009
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
MRI: High Aspect Ratio Etching System for Micro and Nanoscale Sensor and Sensor Systems Applications
MRI:用于微米级和纳米级传感器及传感器系统应用的高深宽比蚀刻系统
- 批准号:
0321099 - 财政年份:2003
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
MEMS Biosensor Array for Biochemical and Clinical Diagnostics
用于生化和临床诊断的 MEMS 生物传感器阵列
- 批准号:
0097468 - 财政年份:2001
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
相似国自然基金
基于轨道角动量的高维量子逻辑门研究
- 批准号:62371202
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
云南热泉佩特斯细菌门(候选门级辐射类群)的多样性及其与宿主互作和适应性进化机制研究
- 批准号:32300001
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长角血蜱电压门控钠离子通道基因突变及其与溴氰菊酯抗性关系的研究
- 批准号:32373037
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于单分子微纳调控的片上全同光子源及纠缠量子逻辑门
- 批准号:12374349
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
布氏田鼠应对植物次生代谢物门布(6-MBOA)的胃肠道菌群适应机制
- 批准号:32370438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Medium: Neuroplane: Scalable Deep Learning through Gate-tunable MoS2 Crossbars
合作研究:FET:媒介:神经平面:通过门可调 MoS2 交叉开关进行可扩展深度学习
- 批准号:
2106824 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Gate-tunable spin devices based on Spin-orbitronic Engineering in Two-Dimensional Metal Monochalcogenides.
基于二维金属单硫属化物中的自旋轨道电子工程的栅极可调自旋器件。
- 批准号:
2128945 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Neuroplane: Scalable Deep Learning through Gate-tunable MoS2 Crossbars
合作研究:FET:媒介:神经平面:通过门可调 MoS2 交叉开关进行可扩展深度学习
- 批准号:
2107011 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Neuroplane: Scalable Deep Learning through Gate-tunable MoS2 Crossbars
合作研究:FET:媒介:神经平面:通过门可调 MoS2 交叉开关进行可扩展深度学习
- 批准号:
2106964 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Graphene atomic film transistor with gate-tunable band-gap
具有栅极可调带隙的石墨烯原子膜晶体管
- 批准号:
21241038 - 财政年份:2009
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (A)