Resolving Twin-Slip Interaction Mechanisms in Hexagonal Close-Packed Metals

解决六方密排金属中的双滑移相互作用机制

基本信息

项目摘要

Deformation of hexagonal close-packed metals, such as magnesium and titanium, involves complex activities of defects in the crystal structure, called twins and dislocations, respectively. Multiple modes of twinning and dislocation slip in crystal planes can be activated, even under simple mechanical loading. Interaction between twin boundaries and dislocations strongly influences the mechanical properties of these metals, but the physics behind the interaction is not understood. This award supports fundamental research on modeling the twin-slip interaction mechanisms, which are difficult to be resolved experimentally. The research will enhance fundamental understanding of the mechanical behavior of important engineering materials, such as magnesium and titanium alloys, that have shown promise in improving energy efficiency in automotive and aerospace applications. Insights obtained from the research will also help design new generation of lightweight alloys with improved strength and ductility. Additionally, the project will promote education and diversity by facilitating integrated computational materials engineering education for undergraduate and graduate students and by engaging underrepresented groups in STEM activities.Twin-slip interaction in metals with hexagonal close-packed crystal structures plays a crucial role in the mechanical properties of these materials. Such interaction has been considered an important factor in the hardening behavior during plastic deformation, but the mechanisms remain largely unknown. Twin-slip interaction occurs on the atomic scale. According to classical theory of deformation twinning, a one-to-one lattice correspondence exists between the parent and the product phase. Thus, if a dislocation in the matrix is transformed into a dislocation in the twin, the slip planes before and after twin-slip interaction must be corresponding planes. These corresponding planes can be unambiguously identified with atomistic simulations. The project will use atomic scale simulations to resolve lattice transformations during interaction between various twinning modes and dislocation modes in magnesium and titanium. By analyzing lattice correspondence, the interaction mechanisms can be resolved with clarity. Conditions for dislocation transmutation and dislocation absorption at different twin boundaries can also definitively be established. And the results obtained can be further extended to other important engineering metals such as zirconium and cobalt alloys.This project is jointly supported by the Civil, Mechanical and Manufacturing Innovations Division in the Engineering Directorate, and the Division of Materials Research in the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
六角形封闭式金属(例如镁和钛)的变形分别涉及晶体结构中缺陷的复杂活性,分别称为双胞胎和脱位。即使在简单的机械载荷下,也可以激活多种晶体平面中的双重和脱位模式。双边界和位错之间的相互作用强烈影响这些金属的机械性能,但是相互作用背后的物理学尚不清楚。该奖项支持建模双滑移相互作用机制的基础研究,这些机制很难通过实验解决。这项研究将增强对重要工程材料(例如镁和钛合金)机械行为的基本理解,这表明在提高汽车和航空航天应用的能源效率方面有望。从研究中获得的见解还将有助于设计新一代的轻质合金,以提高强度和延展性。此外,该项目将通过促进本科和研究生的综合计算材料工程教育来促进教育和多样性,并通过使代表性不足的群体参与STEM活动。Twin-SLIP相互作用具有六角形封闭式填充的晶体结构在这些材料机械特性中起着至关重要的作用。这种相互作用被认为是塑性变形过程中硬化行为的重要因素,但这些机制在很大程度上未知。双滑移相互作用发生在原子量表上。根据经典的变形孪生理论,父母和产品阶段之间存在一对一的晶格对应关系。因此,如果将基质中的脱位转换为双胞胎中的位错,则在双滑动相互作用之前和之后的滑动平面必须是相应的平面。这些相应的平面可以通过原子模拟明确识别。该项目将使用原子量表模拟在镁和钛中的各种双胞胎模式和位错模式之间的相互作用期间解决晶格变换。通过分析晶格对应关系,可以清楚地解决相互作用机制。在不同双边界处的脱位变异和脱位吸收条件也可以确定确定。并且获得的结果可以进一步扩展到其他重要的工程金属,例如锆和钴合金。该项目得到了工程局的民用,机械和制造创新部的共同支持,以及数学和物理科学局的材料研究部以及该奖项的材料研究部。这些奖项反映了NSF的合法传教士和范围的均具有良好的影响。 标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lattice transformation in grain boundary migration via shear coupling and transition to sliding in face-centered-cubic copper
  • DOI:
    10.1016/j.actamat.2021.117127
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Bin Li;Janel Leung
  • 通讯作者:
    Bin Li;Janel Leung
A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for {112¯2}〈112¯3¯〉 mode in hexagonal close-packed titanium
  • DOI:
    10.1016/j.actamat.2021.117150
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Jingwei Li;Manling Sui;Bin Li
  • 通讯作者:
    Jingwei Li;Manling Sui;Bin Li
Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy
  • DOI:
    10.1016/j.actamat.2020.08.039
  • 发表时间:
    2020-10-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Bin Li;Shen, Yidi;An, Qi
  • 通讯作者:
    An, Qi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yantao Shen其他文献

Mind-controlled micro-biomanipulation with position sensing feedback: System integration and validation
具有位置传感反馈的意念控制微生物操纵:系统集成和验证
Inertial-Measurement-Unit (IMU) Based Motion Tracking for Biomorphic Hyper-Redundant Snake Robot
基于惯性测量单元 (IMU) 的仿生超冗余蛇形机器人运动跟踪
Quantification and Verification of Automobile Interior Textures by a High Performance Tactile-Haptic Interface
通过高性能触觉界面对汽车内部纹理进行量化和验证
In situ micro-force sensing and quantitative elasticity evaluation of living Drosophila embryos at different stages
果蝇活体胚胎不同阶段的原位微力传感和定量弹性评估
Development of a biomimetic non-invasive radial pulse sensor: Design, calibration, and applications
仿生非侵入式径向脉冲传感器的开发:设计、校准和应用

Yantao Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yantao Shen', 18)}}的其他基金

Understanding Dislocation Motion and Plasticity via First Principles Simulations Towards Manufacturing of High Ductility Magnesium Alloys
通过高延展性镁合金制造的第一原理模拟了解位错运动和塑性
  • 批准号:
    2032483
  • 财政年份:
    2020
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
REU Site: Biomimetic and Soft Robotics (BioSoRo): from Biological Inspirations to Engineered Mechanisms
REU 网站:仿生和软机器人 (BioSoRo):从生物学灵感到工程机制
  • 批准号:
    1852578
  • 财政年份:
    2019
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Electro-Braille: A New Tactile Sensory Substitution and Assistive Technology for the Blind and Visually Impaired
职业:自适应电子盲文:一种针对盲人和视障人士的新型触觉替代和辅助技术
  • 批准号:
    1352006
  • 财政年份:
    2014
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant

相似国自然基金

双靶向滑膜M1型巨噬细胞和活化成纤维细胞在骨关节炎精准治疗中的作用及机制研究
  • 批准号:
    82372474
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
脉冲抛物型和双曲型分布参数系统的滑模控制研究
  • 批准号:
    62373119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于双滑模自适应控制的协作机器人永磁伺服系统快速高精定位方法
  • 批准号:
    52277068
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
高压柱塞泵滑靴双参量自反馈耦合支承理论及表面自修复性能强化
  • 批准号:
    52275069
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
高压柱塞泵滑靴双参量自反馈耦合支承理论及表面自修复性能强化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

消散項を含む双曲型方程式の平滑化効果とその漸近解析への応用
含耗散项双曲方程的平滑效应及其在渐近分析中的应用
  • 批准号:
    24K06822
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
定量的超局所解析の方法論の確立
定量超局部分析方法论的建立
  • 批准号:
    22K18673
  • 财政年份:
    2022
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The role of slip and twinning in bending deformation of HCP metals
滑移和孪生在 HCP 金属弯曲变形中的作用
  • 批准号:
    22K04672
  • 财政年份:
    2022
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stress evaluation of earthquake fault and slow slip fault in subduction zone
俯冲带地震断层和慢滑断层应力评估
  • 批准号:
    19K04019
  • 财政年份:
    2019
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Hydration States of Charged Polymer Thin Films and Visualization of the Interactions
带电聚合物薄膜水合状态的控制和相互作用的可视化
  • 批准号:
    18K05218
  • 财政年份:
    2018
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了