EAGER: Combining van der Waals heterostructures and superlattices: new approach to 2D tunable optoelectronic devices

EAGER:结合范德华异质结构和超晶格:二维可调谐光电器件的新方法

基本信息

  • 批准号:
    2015668
  • 负责人:
  • 金额:
    $ 20.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Optoelectronic devices bridge optics to electronics and they are ubiquitous in our society. They include solid state light sources such as light emitting diodes and laser diodes, as well as modulators (that can encode an electrical or radiofrequency signal onto light) and detectors (which can convert light back into an electrical signal). Many modern optoelectronic devices rely on quantum confinement effects, and more in general on mesoscopic quantum structures which can be realized, for instance, by growing a sequence of thin layers of semiconductors (with thicknesses in the order of few nanometers). These structures possess new electrical and optical properties which the bulk semiconductors lack and are widely used for lasers (e.g. in quantum cascade lasers and quantum well laser diodes), modulators (e.g. in electro-absorption modulators) and detectors (such as in quantum dots and quantum well based detectors). New materials and technologies are very actively investigated by the scientific community to create faster, smaller and low-cost optoelectronic devices, and integration on silicon is often a must for telecommunications and imaging applications. 2D and van der Waals materials have attracted a lot of attention for optoelectronics, since they host new physical effects and can often be tuned electrically, by applying a voltage between the 2D material and a substrate via a gate oxide. However, the creation of large-scale quantum confinement in these materials is prohibitive since it is limited by the resolution of the lithographic and etching processes used to pattern either the 2D materials or the electrical gates.So far, quantum engineering of 2D materials has been achieved mostly using heterostructures, including the realization of Moiré patterns. But these approaches have limits for large scale production and typically show weak effects. This EAGER research project aims to explore a new technique to create large scale quantum confined effects in 2D materials and to demonstrate devices based on this new technology. The approach is based on a new gate oxide fabrication technology. The gate consists of alternating layers of different oxides that are used to create a variable electrical potential on 2D materials when a voltage is applied on the gate. Unlike their bulk 3D counterparts, these quantum confined structures are widely tunable since the depth of the quantum wells is proportional to the applied gate. The PI plans to use these new effects to realize new types of modulators and photodetectors. Modulators can be realized by creating arrays of coupled two-dimensional quantum wells (also known as superlattices), which absorb light in different ways accordingly to the applied voltage. Both interband and intersubband absorptions in the 2D materials can be engineered using this new approach. Because these structures can be gated with highly conductive electrodes, the modulation speed is expected to be at least one order of magnitude greater than today’s modulators based on 2D materials. Furthermore, these devices will benefit from the possibility of quantum-engineering the excitons in 2D materials which appear at room temperature in the visible and near infrared ranges even when no quantum confinement is used. In addition to its obvious technological relevance, this project will advance understanding of 2D materials and associated quantum phenomena and offer opportunities for integrating this new knowledge in several courses on materials and devices at Harvard University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光电设备将光学与电子学联系起来,在我们的社会中无处不在,包括发光二极管和激光二极管等固态光源,以及调制器(可以将电信号或射频信号编码到光上)和探测器(可以将电信号或射频信号编码到光上)。将光转换回电信号)许多现代光电器件依赖于量子限制效应,更普遍地依赖于介观量子结构,例如,可以通过生长一系列量子结构来实现。这些结构具有块状半导体所缺乏的新的电学和光学特性,并且广泛用于激光器(例如量子级联激光器和量子阱激光二极管)、调制器(例如量子阱激光二极管)。科学界正在积极研究新材料和技术,以创造更快、更小和低成本的探测器。光电器件,硅上的集成通常是电信和成像应用的必备条件,范德华材料引起了光电器件的广泛关注,因为它们具有新的物理效应,并且通常可以通过在之间施加电压来进行电调谐。然而,在这些材料中产生大规模量子限制是令人望而却步的,因为它受到用于图案化的光刻和蚀刻工艺的分辨率的限制。二维材料或电门。到目前为止,二维材料的量子工程主要是通过异质结构实现的,包括莫尔图案的实现,但这些方法在大规模生产方面存在局限性,并且通常表现出较弱的效果。探索一种在二维材料中产生大规模量子限制效应的新技术,并演示基于该新技术的器件。该方法基于一种新的栅极氧化物制造技术,该栅极由用于形成不同氧化物的交替层组成。当在栅极上施加电压时,它们会在 2D 材料上产生可变电势,与它们的体 3D 盟友不同,这些量子限制结构具有广泛的可调性,因为量子阱的深度与所施加的栅极成正比。实现新型调制器和光电探测器的新效应可以通过创建两个耦合维量子阱(也称为超晶格)阵列来实现,它们根据所施加的电压以不同的方式吸收光。二维材料中的子带间吸收可以使用这种新方法进行设计,因为这些结构可以用高导电电极进行门控,因此调制速度预计将比当今基于二维材料的调制器至少高一个数量级。除了明显的技术之外,设备还将受益于对二维材料中的激子进行量子工程的可能性,即使不使用量子限制,这些激子在室温下也会出现在可见光和近红外范围内。相关性,该项目将促进对二维材料和相关量子现象的理解,并提供将这些新知识整合到哈佛大学材料和设备的几门课程中的机会。该奖项是 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Federico Capasso其他文献

Time Reversal Differentiation of FDTD for Photonic Inverse Design
用于光子逆设计的 FDTD 时间反演微分
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Rui Jie Tang;S. W. D. Lim;M. Ossiander;Xinghui Yin;Federico Capasso
  • 通讯作者:
    Federico Capasso
Highly Confined Hybridized Polaritons in Scalable van der Waals Heterostructure Resonators.
可扩展范德华异质结构谐振器中的高度受限混合极化子。
  • DOI:
    10.1021/acsnano.3c13047
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Yue Luo;Ji;Jiadi Zhu;M. Tamagnone;Federico Capasso;Tomás Palacios;Jing Kong;William L. Wilson
  • 通讯作者:
    William L. Wilson
MIT Open Access Articles Bonding, antibonding and tunable optical forces in asymmetric membranes
麻省理工学院开放获取文章非对称膜中的键合、反键合和可调光学力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro W. Rodriguez;A. McCauley;Pui;David P. Woolf;E. Iwase;Federico Capasso;M. Lončar;Steven G. Johnson
  • 通讯作者:
    Steven G. Johnson
Metasurface Polarization Optics
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Federico Capasso
  • 通讯作者:
    Federico Capasso

Federico Capasso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Federico Capasso', 18)}}的其他基金

Mid-infrared reconfigurable pulse generators
中红外可重构脉冲发生器
  • 批准号:
    2221715
  • 财政年份:
    2022
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser transceivers for terahertz wireless communication
合作研究:用于太赫兹无线通信的量子级联激光收发器
  • 批准号:
    1807323
  • 财政年份:
    2018
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser sources of high-power, coherent frequency combs
合作研究:高功率相干频率梳的量子级联激光源
  • 批准号:
    1614631
  • 财政年份:
    2016
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
EAGER: A new coupling scheme for surface plasmon polaritons using structured illumination
EAGER:使用结构照明的表面等离子体激元的新耦合方案
  • 批准号:
    1347251
  • 财政年份:
    2013
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrashort pulse generation and mid-infrared frequency combs from quantum cascade lasers
合作研究:量子级联激光器的超短脉冲生成和中红外频率梳
  • 批准号:
    1230477
  • 财政年份:
    2012
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant

相似国自然基金

数字孪生场景语义视觉变量智能优选与自动编排组合方法
  • 批准号:
    42361072
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
结合界面预压式复合粘结锚固抗剪连接组合梁的界面强化机制及疲劳性能研究
  • 批准号:
    52378158
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
城市轨道交通既有减振线路轨道参数识别及组合减振研究
  • 批准号:
    52372328
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向高代价多目标组合优化问题的代理模型及演化算法研究
  • 批准号:
    62306174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微生物-零价铁组合式PRB修复铀污染地下水协同作用机制研究
  • 批准号:
    42302293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
  • 批准号:
    2345129
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了