Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data

合作研究:高维高频数据的统计推断

基本信息

  • 批准号:
    2015530
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

To pursue the promise of the big data revolution, the current project will focus on a common form of data, high dimensional high frequency data (HDHFD), where a snapshot of the data involves a large number of variables, and at the same time new data streams in every fraction of milliseconds. With technological advances in data collection, HDHFD occurs in medical applications from neuroscience to patient care; finance and economics; geosciences such as earthquake data; marine science including fishing and shipping; turbulence; internet data; and other areas where data streaming is available. The Principal Investigators' (PIs') research focuses on how to extract information from complex big data and how to turn data into knowledge. In particular, the project seeks to develop cutting-edge mathematics and statistical methodology to uncover the structure governing HDHFD systems. This structure is characterized by a web of dependence across both time and dimension, and the role of analysis is to provide guidance on how to reduce the complexity while retaining the important features of the data architecture. An integral part of this research is also about how to quantify the uncertainty in estimates and forecasts in HDHFD systems. In addition to developing a general theory, the project is concerned with applications to financial data, including risk management, forecasting, and portfolio management. More precise estimators, with improved margins of error, will be useful in all these areas of finance. The results are of interest to main-street investors, regulators and policymakers, and the results are entirely in the public domain. The purpose of this project is to explore high dimensional high frequency data (HDHFD) from several angles. A fundamental approach is to extend the PIs’ contiguity theory. Under a contiguous probability, the structure of the observations is often more accessible (frequently Gaussian) in local neighborhoods, facilitating statistical analysis. This is achieved without altering current models. In a contribution to factor modeling of the HDHFD data, the PIs will explore time-varying matrix decompositions, including the development of a singular value decomposition (SVD) for high frequency data, as a more direct path to a factor model. We plan to compare the new SVD with PCA based methods, as well as L1 type methods such as nonnegative matrix factorization. The PIs have discovered a new way to look at time and cross-dimension dependence, originally developed by the PIs in connection with their observed asymptotic variance (observed AVAR). They will now look into the possibility to "borrow" information across time and dimension. This tool will be used for matrix decompositions, as well as to develop volatility matrices for the drift part of a financial process, which will interface with their planned work on matrix decompositions. The PIs will explore a path to an observed AVAR that takes place in continuous time, thereby improving accuracy and simplifying both implementation and theoretical analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了实现大数据革命的承诺,当前的项目将重点关注一种常见的数据形式,即高维高频数据(HDHFD),其中数据快照涉及大量变量,同时又包含新的数据。随着数据收集技术的进步,HDHFD 出现在从神经科学到患者护理的医学应用中;诸如地震数据的海洋科学;以及地区首席研究员(PI)的研究重点是如何从复杂的大数据中提取信息以及如何将数据转化为知识,该项目旨在开发尖端的数学和统计方法来揭示问题。该结构的特点是跨时间和维度的依赖网络,分析的作用是为如何降低复杂性提供指导,同时保留数据架构的重要组成部分。研究还涉及如何量化估计和预测中的不确定性除了开发一般理论外,该项目还涉及金融数据的应用,包括风险管理、预测和投资组合管理,更精确的估算器以及改进的误差范围将在所有这些领域发挥作用。研究结果引起了主流投资者、监管机构和政策制定者的兴趣,并且该结果完全属于公共领域,该项目的目的是从多个角度探索高维高频数据(HDHFD)。方法是扩展 PI 的邻接理论。在邻域中,观测结果的结构通常更容易理解(通常是高斯分布),这有助于在不改变当前模型的情况下实现统计分析。数据方面,PI 将探索时变矩阵分解,包括开发高频数据的奇异值分解 (SVD),作为通往因子模型的更直接途径。我们计划比较新的模型。基于 PCA 的方法以及 L1 类型方法(例如非负矩阵分解)的 SVD 发现了一种查看时间和跨维度依赖性的新方法,最初是由 PI 结合观察到的渐近方差(观察到的 AVAR)开发的。 )。他们现在将研究跨时间和维度“借用”信息的可能性,该工具将用于矩阵分解,以及为金融的漂移部分开发波动率矩阵。过程,该过程将与他们计划的矩阵分解工作相结合,探索一条观察连续时间发生的 AVAR 的路径,从而提高准确性并简化实施和理论分析。该奖项反映了 NSF 的法定使命,并已得到批准。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Observed Asymptotic Variance: Hard edges, and a regression approach
观察到的渐近方差:硬边和回归方法
  • DOI:
    10.1016/j.jeconom.2020.07.008
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Mykland, Per A.;Zhang, Lan
  • 通讯作者:
    Zhang, Lan
A CLT for second difference estimators with an application to volatility and intensity
  • DOI:
    10.1214/22-aos2176
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. A. Stoltenberg;P. Mykland;Lan Zhang
  • 通讯作者:
    E. A. Stoltenberg;P. Mykland;Lan Zhang
The Five Trolls Under the Bridge: Principal Component Analysis With Asynchronous and Noisy High Frequency Data
桥下的五个巨魔:异步和噪声高频数据的主成分分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan Zhang其他文献

Impacts of Resource Alertness and Change Leadership Style on Financial Performance: An Empirical Study
资源警觉性和变革领导风格对财务绩效的影响:实证研究
  • DOI:
    10.4018/jgim.2021030103
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ao Zhang;Yong Chen;Xiaobo Xu;Yang Gao;Lan Zhang
  • 通讯作者:
    Lan Zhang
A Meta-analysis of the Protective Effect of Recombinant Human Erythropoietin (rhEPO) for Neurodevelopment in Preterm Infants
重组人促红细胞生成素 (rhEPO) 对早产儿神经发育保护作用的荟萃分析
  • DOI:
    10.1007/s12013-014-0265-1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Huiping Wang;Lan Zhang;Yan Jin
  • 通讯作者:
    Yan Jin
Maternal Utero-Placental Perfusion Discordance in Monochorionic-Diamniotic Twin Pregnancies with Selective Growth Restriction Assessed by Three-Dimensional Power Doppler Ultrasound
三维能量多普勒超声评估选择性生长受限单绒毛膜-双羊膜双胎妊娠母体子宫胎盘灌注不一致
  • DOI:
    10.12659/msm.919247
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Lan Zhang;Xiyao Liu;Junnan Li;Xing Wang;Shuai Huang;Xiaofang Luo;Hua Zhang;Li Wen;Chao Tong;Richard Saffery;Jianying Yan;Hongbo Qi;Mark D.Kilby;Philip N.Baker
  • 通讯作者:
    Philip N.Baker
Radiolabeling of RGD peptide and preliminary biological evaluation in mice bearing U87MG tumors.
RGD 肽的放射性标记和 U87MG 肿瘤小鼠的初步生物学评估。
  • DOI:
    10.1016/j.bmc.2012.04.037
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Jianbo Li;Lingli Shi;L. Jia;Dawei Jiang;W. Zhou;Weiqing Hu;Y. Qi;Lan Zhang
  • 通讯作者:
    Lan Zhang
Preparation and characterization of gel polymer electrolytes based on acrylonitrile–methoxy polyethylene glycol (350) monoacrylate–lithium acrylate terpolymers
基于丙烯腈-甲氧基聚乙二醇(350)单丙烯酸酯-丙烯酸锂三元共聚物的凝胶聚合物电解质的制备和表征
  • DOI:
    10.1016/j.electacta.2008.07.046
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Lan Zhang;Shichao Zhang
  • 通讯作者:
    Shichao Zhang

Lan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan Zhang', 18)}}的其他基金

CRII: CNS: IoT-aware Federated On-Device Intelligence
CRII:CNS:物联网感知的联合设备上智能
  • 批准号:
    2418308
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CRII: CNS: IoT-aware Federated On-Device Intelligence
CRII:CNS:物联网感知联合设备智能
  • 批准号:
    2153381
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High-Frequency Data
合作研究:高频数据的统计推断
  • 批准号:
    1713118
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Better efficiency, better forecasting, better accuracy: A new light on the dependence structure in high frequency data
协作研究:更高的效率、更好的预测、更高的准确性:高频数据中依赖结构的新视角
  • 批准号:
    1407820
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分枝过程的传播回溯问题统计推断研究
  • 批准号:
    12305040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
潜在威胁小行星热物理特性统计特征研究
  • 批准号:
    12303066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去中心化分布式计算中数据异质性的非监督统计模型研究
  • 批准号:
    12301336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
快速射电暴的物理机制与统计特性研究
  • 批准号:
    12373052
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多元调查数据中统计关联模式的潜变量与图建模研究
  • 批准号:
    12301373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
  • 批准号:
    10722568
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了