Statistical Estimation from Decoupled Data

根据解耦数据进行统计估计

基本信息

  • 批准号:
    2015291
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Modern statistics is defined by the fact that a great deal more data is available to practitioners than ever before. This is particularly the case in the sciences, where advances in experimental methodology across fields such as biology, chemistry, and physics have led to an explosion of different types of data, collected by different measurement apparatuses at potentially different times. Moreover, it may be difficult or impossible to connect data points from different experiments. For example, a chemist may apply two different measurement techniques to the same batch of molecules to obtain high-quality data about the whole batch, but it may be challenging to track the identities of particular molecules between measurements. The statistician who wishes to make the best possible inferences is faced with the difficult problem of how to integrate the data from different sources to conduct a unified analysis. Despite the ubiquity of this problem, rigorous statistical analyses of procedures designed to work with decoupled data are rare. The main goal of this project is to develop new tools for performing estimation tasks with decoupled data and to establish the fundamental limits of such techniques. This project will have impact on scientific and statistical methodology in both research and industrial settings.The graduate student support will be used on interdisciplinary research and writing codes. The project will investigate optimal rates of estimation for regression problems given access to decoupled data, and to establish potential trade-offs. Several intermediate regimes will be considered, for example, where the experimenter has access to many independent batches of shuffled data or to data with partial coupling information. This project will quantify the statistical price for learning with decoupled data via tight minimax bounds. This research is also aimed at establishing when minimax statistical procedures can be made computationally efficient, and investigating the possible presence of information theoretic-computational gaps in optimal rates of estimation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代统计学的定义是,从业者可以获得比以往更多的数据。在科学领域尤其如此,生物学、化学和物理学等领域实验方法的进步导致不同类型的数据激增,这些数据由不同的测量设备在不同的时间收集。此外,连接来自不同实验的数据点可能很困难或不可能。例如,化学家可以对同一批次的分子应用两种不同的测量技术,以获得有关整个批次的高质量数据,但跟踪测量之间特定分子的身份可能具有挑战性。希望做出尽可能最佳推论的统计学家面临着如何整合不同来源的数据以进行统一分析的难题。尽管这个问题普遍存在,但对旨在处理解耦数据的程序进行严格的统计分析却很少。该项目的主要目标是开发新工具,用于使用解耦数据执行估计任务,并确定此类技术的基本限制。该项目将对研究和工业环境中的科学和统计方法产生影响。研究生的支持将用于跨学科研究和编写代码。该项目将研究在获得解耦数据的情况下回归问题的最佳估计率,并建立潜在的权衡。例如,将考虑几种中间方案,其中实验者可以访问许多独立批次的混洗数据或具有部分耦合信息的数据。该项目将通过严格的极小极大界限量化解耦数据学习的统计成本。这项研究还旨在确定何时可以提高极小极大统计程序的计算效率,并调查最佳估计率中可能存在的信息论计算差距。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dimension-free log-Sobolev inequalities for mixture distributions
  • DOI:
    10.1016/j.jfa.2021.109236
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hong-Bin Chen;Sinho Chewi;Jonathan Niles-Weed
  • 通讯作者:
    Hong-Bin Chen;Sinho Chewi;Jonathan Niles-Weed
It Was “All” for “Nothing”: Sharp Phase Transitions for Noiseless Discrete Channels
  • DOI:
    10.1109/tit.2022.3225802
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jonathan Niles-Weed;Ilias Zadik
  • 通讯作者:
    Jonathan Niles-Weed;Ilias Zadik
Asymptotics for Semidiscrete Entropic Optimal Transport
半离散熵最优输运的渐近
  • DOI:
    10.1137/21m1440165
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Altschuler, Jason M.;Niles-Weed, Jonathan;Stromme, Austin J.
  • 通讯作者:
    Stromme, Austin J.
The discrepancy of random rectangular matrices
随机矩形矩阵的差异
  • DOI:
    10.1002/rsa.21054
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Altschuler, Dylan J.;Niles‐Weed, Jonathan
  • 通讯作者:
    Niles‐Weed, Jonathan
Strong recovery of geometric planted matchings
  • DOI:
    10.1137/1.9781611977073.36
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dmitriy Kunisky;Jonathan Niles-Weed
  • 通讯作者:
    Dmitriy Kunisky;Jonathan Niles-Weed
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Niles-Weed其他文献

Jonathan Niles-Weed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Niles-Weed', 18)}}的其他基金

CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Optimal Transport in High Dimensional Mixtures
合作研究:高维混合物中的统计最优传输
  • 批准号:
    2210583
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

多种深度学习协同的北极海冰表面积雪深度遥感反演及其未来预估研究
  • 批准号:
    42306201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
碎石粒料颗粒接触状态与破碎模式交互作用下弹塑性变形机理及预估模型
  • 批准号:
    52308465
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标下中国北方旱区干湿变化的约束预估
  • 批准号:
    42305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全球变暖背景下潜热释放加热对北半球阻塞的影响及未来预估
  • 批准号:
    42375021
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向超大规模集成电路功耗的设计早期预估与片上实时监测技术
  • 批准号:
    62304192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Freshness-marker-based estimation of vegetable freshness by nondestructive Vis-NIR spectroscopy
基于新鲜度标记的无损可见-近红外光谱法评估蔬菜新鲜度
  • 批准号:
    24K09171
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了